浏览全部资源
扫码关注微信
广东省功能软凝聚态物质重点实验室 广东工业大学材料与能源学院 广州 510006
E-mail: p-xxliu@gdut.edu.cn Xiao-xuan Liu, E-mail: p-xxliu@gdut.edu.cn
纸质出版日期:2020-6,
网络出版日期:2020-1-22,
收稿日期:2019-12-10,
修回日期:2019-12-27,
扫 描 看 全 文
刘珠, 洪鹏, 向洪平, 黄梓英, 罗青宏, 杨先君, 刘晓暄. 双交联网络有机硅弹性体的制备及其自修复性能研究[J]. 高分子学报, 2020,51(6):656-669.
Zhu Liu, Peng Hong, Hong-ping Xiang, Zi-ying Huang, Qing-hong Luo, Xian-jun Yang, Xiao-xuan Liu. Preparation and Self-healability of Silicone Elastomer with Dual-crosslinked Network[J]. Acta Polymerica Sinica, 2020,51(6):656-669.
刘珠, 洪鹏, 向洪平, 黄梓英, 罗青宏, 杨先君, 刘晓暄. 双交联网络有机硅弹性体的制备及其自修复性能研究[J]. 高分子学报, 2020,51(6):656-669. DOI: 10.11777/j.issn1000-3304.2019.19207.
Zhu Liu, Peng Hong, Hong-ping Xiang, Zi-ying Huang, Qing-hong Luo, Xian-jun Yang, Xiao-xuan Liu. Preparation and Self-healability of Silicone Elastomer with Dual-crosslinked Network[J]. Acta Polymerica Sinica, 2020,51(6):656-669. DOI: 10.11777/j.issn1000-3304.2019.19207.
首先通过水解缩合法制备出了不同巯基含量的无色透明巯基硅油(PDMS-SH),然后通过PDMS-SH与端乙烯基硅油的光诱导点击反应和羧基硅油与氨基硅油的热可逆动态离子交联构建出可逆/不可逆杂化双交联网络,制备出一种可快速UV固化及优异自修复性的有机硅透明弹性体. 辐照强度为70 mW/cm
2
,Darocur1173加入量为1.0 wt%,―SH/―Vi摩尔比为1.5/1时,巯基-烯点击聚合具有较高的凝胶率、转化率及聚合速率,且固化速率不受离子交联网络的影响. 巯基-烯初网络形成后,进一步加热可促进离子网络的形成,提高弹性体力学性能. 此外,动态离子交联网络在弹性体中均匀分布. 增加离子交联网络可有效降低松弛活化能,有利于应力松弛及动态可逆性,同时热处理工艺有利于动态离子网络的移动及解离-重组过程,从而有利于双网络结构的形成及修复效率的提升. 更重要的是,选用巯基硅油DE/15及离子交联网络含量仅15 wt%时,弹性体具有较优力学性能及自修复效率
多次修复后的修复效率仍可高达90%以上
同时快速固化的弹性体具有高达90%以上的可见光透光率. 为基于可逆动态离子缔合诱导的快速固化自修复透明有机硅材料提供一种新型可行的制备方法.
Silicone elastomer with self-healability can be developed by effectively constructing reversible dynamic bonds (
i.e.
covalent and non-covalent). Due to the low bond energy of dynamic bonds
the mechanical properties of the silicone elastomers are generally poor. Besides
the self-healing silicone elastomers are usually not transparent due to their compatibility. To solve this problem
colourless and transparent sulfhydryl silicone oils (PDMS-SH) are firstly prepared by the hydrolysis-condensation reaction. Then a transparent silicone elastomer with fast UV curing rate and excellent self-healability can be achieved by the reversible-irreversible hybrid dual-crosslinked networks
constructed by the photo-induced click reaction of PDMS-SH and vinyl-terminated silicone oil (VPS)
as well as the thermal reversible dynamic cross-linked network of carboxyl- and amino-modified silicone oil. If the irradiation intensity is 70 mW/cm
2
the dosage of Darocur1173 is 1.0 wt% and the molar ratio of ―SH/―Vi is 1.5/1
the thiol-ene photopolymerization has high gel content
conversion rate and polymerization rate
and will not be affected by ion cross-linked network. The formation of ionic crosslinking network and improvement of physical properties can be promoted
via
further heating. Moreover
the dynamic ionic crosslinking network is uniformly distributed in silicone elastomers. The increase of ion cross-linked network can effectively reduce the activation energy
E
a
which is beneficial to the stress relaxation. Meanwhile
movement
dissociation and recombination of dynamic ion reversible network
as well as the formation of dual network structure can benefit from the heat treatment
so the improvement of healing efficiency will be more easily achieved. Importantly
the prepared silicone elastomer with a transmittance of 93% in visible light and healing efficiency over ~ 90% after multiple healing cycles can be acquired
Therefore
a feasible approach is provided to impart reversible ionic association induced self-healing silicone materials.
巯基-烯点击光聚合动态离子交联杂化双网络自修复有机硅弹性体巯基硅油
Thiol-ene photopolymerizationDynamic ion cross-linked networkHybrid dual-crosslinked networkSelf-healing silicone elastomerThiol-modified silicone oil
Li P Z, Wang X J, Zhao Y L. Coordin Chem Rev , 2019 . 380 484 - 518 . DOI:10.1016/j.ccr.2018.11.006http://doi.org/10.1016/j.ccr.2018.11.006 .
Hoyle C E, Bowman C N. Angew Chem Int Ed , 2010 . 49 ( 9 ): 1540 - 1573 . DOI:10.1002/anie.200903924http://doi.org/10.1002/anie.200903924 .
Takayama Y, Kusamori K, Nishikawa M. Molecules , 2019 . 24 192 DOI:10.3390/molecules24010192http://doi.org/10.3390/molecules24010192 .
Xiang H P, Wang X W, Ou Z R, Lin G H, Yin J F, Liu Z, Zhang L Y, Liu X X. Prog Org Coat , 2019 . 137 105372 DOI:10.1016/j.porgcoat.2019.105372http://doi.org/10.1016/j.porgcoat.2019.105372 .
Zhang Y, Zuo Y J, Yang T X, Gou Z M, Lin W Y. Eur Polym J , 2019 . 112 515 - 523 . DOI:10.1016/j.eurpolymj.2019.01.014http://doi.org/10.1016/j.eurpolymj.2019.01.014 .
Lowe A B. Polym Chem , 2014 . 5 4820 - 4870 . DOI:10.1039/C4PY00339Jhttp://doi.org/10.1039/C4PY00339J .
Alameda B M, Palmer T C, Sisemore J D, Pinrini N G, Patton D L. Polym Chem , 2019 . 10 5635 - 5644 . DOI:10.1039/C9PY01082Chttp://doi.org/10.1039/C9PY01082C .
Hu Di(胡笛), Xu Caihong(徐彩虹). Polymer Bulletin(高分子通报) , 2011 . ( 11 ): 111 - 119.
Wang Z Y, Liang H B, Yang H T, Xiong L, Zhou J P, Huang S M, Zhao C H, Zhong J, Fan X F. Prog Org Coat , 2019 . 137 105282 DOI:10.1016/j.porgcoat.2019.105282http://doi.org/10.1016/j.porgcoat.2019.105282 .
Nie J, Li J P, Deng H, Pan H C. Chin J Anal Chem , 2015 . 43 ( 4 ): 609 - 617 . DOI:10.1016/S1872-2040(15)60819-2http://doi.org/10.1016/S1872-2040(15)60819-2 .
Xiang H P, Qian H J, Lu Z Y, Rong M Z, Zhang M Q. Green Chem , 2015 . 17 4315 - 4325 . DOI:10.1039/C5GC00754Bhttp://doi.org/10.1039/C5GC00754B .
Huynh T P, Sonar P, Haick H. Adv Mater , 2017 . 29 ( 19 ): 1604973 DOI:10.1002/adma.201604973http://doi.org/10.1002/adma.201604973 .
Xiang Hongping(向洪平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1130 - 1140 . DOI:10.11777/j.issn1000-3304.2017.17016http://doi.org/10.11777/j.issn1000-3304.2017.17016 .
Xiang H P, Yin J F, Lin G H, Liu X X, Rong M Z, Zhang M Q. Chem Eng J , 2019 . 358 878 - 890 . DOI:10.1016/j.cej.2018.10.103http://doi.org/10.1016/j.cej.2018.10.103 .
Zhu D Y, Rong M Z, Zhang M Q. Prog Polym Sci , 2015 . 49 175 - 220.
Zhang Zeping(张泽平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 829 - 852 . DOI:10.11777/j.issn1000-3304.2018.18060http://doi.org/10.11777/j.issn1000-3304.2018.18060 .
Yue H B, Fernάndez-Blάzquez J P, Beneito D F, Vilatela J J. J Mater Chem A , 2014 . 2 3881 - 3887 . DOI:10.1039/c3ta14961ghttp://doi.org/10.1039/c3ta14961g .
Lee M W, An S, Lee C, Liou M, Yarin A L, Yoon A L. J Mater Chem A , 2014 . 2 7045 - 7053 . DOI:10.1039/c4ta00623bhttp://doi.org/10.1039/c4ta00623b .
Keller M W, White S R, Sottos N R. Adv Funct Mater , 2007 . 17 ( 14 ): 2399 - 2404 . DOI:10.1002/adfm.200700086http://doi.org/10.1002/adfm.200700086 .
Rao Q Q, Chen K L, Wang C X. RSC Adv , 2016 . 6 53949 DOI:10.1039/C6RA09582Hhttp://doi.org/10.1039/C6RA09582H .
Xiang H P, Rong M Z, Zhang M Q. Polymer , 2017 . 108 339 - 347 . DOI:10.1016/j.polymer.2016.12.006http://doi.org/10.1016/j.polymer.2016.12.006 .
Cheng Long(程龙), Yu Dajiang(于大江), You Jiajian(尤加健), Long Teng(龙腾), Chen Susu(陈素素), Zhou Chuanjian(周传健). Progress in Chemistry(化学进展) , 2018 . 30 ( 12 ): 1852 - 1862.
Chen Xingxing(陈兴幸), Zhong Qianyun(钟倩云), Wang Shujuan(王淑娟), Wu Youshen(吴宥伸), Tan Jidong(谭继东), Lei Hengxin(雷恒鑫), Huang Shaoyong(黄绍永), Zhang Yanfeng(张彦峰). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 469 - 484 . DOI:10.11777/j.issn1000-3304.2019.18277http://doi.org/10.11777/j.issn1000-3304.2019.18277 .
Wu X, Yang X, Yu R, Zhao X J, Zhang Y, Huang W. J Mater Chem A , 2018 . 6 10184 - 10188 . DOI:10.1039/C8TA02102Chttp://doi.org/10.1039/C8TA02102C .
Zhao L W, Jiang B, Huang Y D. J Mater Sci , 2019 . 54 5472 - 5483 . DOI:10.1007/s10853-018-03233-6http://doi.org/10.1007/s10853-018-03233-6 .
Zhao L W, Shi X R, Yin Y, Jiang B, Huang Y D. Compos Sci Technol , 2020 . 186 107919 DOI:10.1016/j.compscitech.2019.107919http://doi.org/10.1016/j.compscitech.2019.107919 .
Wang Yi(王怡), Feng Zhanbin(冯展彬), Zuo Hongli(左洪礼), Yu Bing(于冰), Ning Nanying(宁南英), Tian Ming(田明), Zhang Liqun(张立群). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 485 - 495 . DOI:10.11777/j.issn1000-3304.2019.18280http://doi.org/10.11777/j.issn1000-3304.2019.18280 .
Roy N, Buhler E, Lehn J M. Polym Int , 2014 . 63 1400 - 1405 . DOI:10.1002/pi.4646http://doi.org/10.1002/pi.4646 .
Kathan M, Kovaříček P, Jurissek C, Senf A, Dallmann A, Thünemann A F, Hecht S. Angew Chem Int Ed , 2016 . 55 13882 - 13886 . DOI:10.1002/anie.201605311http://doi.org/10.1002/anie.201605311 .
Wang Y P, Ding L, Zhao C Y, Wang S, Xuan S H, Jiang H, Gong X L. Compos Sci Technol , 2018 . 168 303 - 311 . DOI:10.1016/j.compscitech.2018.10.019http://doi.org/10.1016/j.compscitech.2018.10.019 .
Wu Baoyi(吴宝意), Xu Yawen(徐亚文), Le Xiaoxia (乐晓霞), Jia Yukun(简钰坤), Lu Wei(路伟), Zhang Jiawei(张佳玮), Chen Tao(陈涛). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 496 - 504 . DOI:10.11777/j.issn1000-3304.2019.18281http://doi.org/10.11777/j.issn1000-3304.2019.18281 .
Bui R, Brook A. Polymer , 2019 . 160 282 - 290 . DOI:10.1016/j.polymer.2018.11.043http://doi.org/10.1016/j.polymer.2018.11.043 .
Li C H, Wang C, Keplinger C, Zuo J L, Jin L H, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z A. Nat Chem , 2016 . 8 618 - 624 . DOI:10.1038/nchem.2492http://doi.org/10.1038/nchem.2492 .
Wu X X, Li J H, Li G, Ling L, Zhang G P, Sun R, Wong C P. J Appl Polym Sci , 2018 . 135 ( 31 ): 46532 DOI:10.1002/app.46532http://doi.org/10.1002/app.46532 .
Ogliani E, Yu L, Javakhishvili I, Skov A L. RSC Adv , 2018 . 8 8285 - 8291 . DOI:10.1039/C7RA13686Bhttp://doi.org/10.1039/C7RA13686B .
Mei J F, Jia X Y, Lai J C, Sun Y, Li C H, Wu J H, Cao Y, You X Z, Bao Z A. Macromol Rapid Commun , 2016 . 37 ( 20 ): 1667 - 1675 . DOI:10.1002/marc.201600428http://doi.org/10.1002/marc.201600428 .
Feng Z B, Yu B, Hu J, Zuo H L, Li J P, Sun H B, Ning N Y, Tian M, Zhang L Q. Ind Eng Chem Res , 2019 . 58 1212 - 1221 . DOI:10.1021/acs.iecr.8b05309http://doi.org/10.1021/acs.iecr.8b05309 .
Tian Lirong(田丽蓉), Yang Li(杨莉), Wang Zhanhua(王占华), Xia Hesheng(夏和生). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 527 - 534 . DOI:10.11777/j.issn1000-3304.2019.19021http://doi.org/10.11777/j.issn1000-3304.2019.19021 .
Kato K, Ikeda Y, Ito K. ACS Macro Lett , 2019 . 8 700 - 704 . DOI:10.1021/acsmacrolett.9b00238http://doi.org/10.1021/acsmacrolett.9b00238 .
Minh H N, Chinh N T, Thanh Van T T, Hoang T. J Appl Polym Sci , 2019 . 136 47412 DOI:10.1002/app.47412http://doi.org/10.1002/app.47412 .
Buyl F D, Comyn J, Shephard N E, Subramaniam N P. J Adhesion Sci Technol , 2002 . 16 1055 - 1071 . DOI:10.1163/156856102760146165http://doi.org/10.1163/156856102760146165 .
Bakhshandeh E, Bastani S, Saeb M R, Croutxé-Barghorn C, Allonas X. Prog Org Coat , 2019 . 130 99 - 113 . DOI:10.1016/j.porgcoat.2019.01.033http://doi.org/10.1016/j.porgcoat.2019.01.033 .
Peng Yan(彭燕), Hou Yujia(侯雨佳), Shen Qiaoqiao(申巧巧), Wang Hui(王辉), Li Gang(李刚), Huang Guangsu(黄光速), Wu Jinrong(吴锦荣). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 1 ): 1 - 7 . DOI:10.11777/j.issn1000-3304.2018.18223http://doi.org/10.11777/j.issn1000-3304.2018.18223 .
Cramer N B, Bowman C N. J Polym Sci, Part A: Polym Chem , 2001 . 39 3311 - 3319 . DOI:10.1002/pola.1314http://doi.org/10.1002/pola.1314 .
Matsumoto K, Oba Y, Nakajima Y, Shimada S, Sato K. Angew Chem Int Ed , 2018 . 57 4637 - 4641 . DOI:10.1002/anie.201801031http://doi.org/10.1002/anie.201801031 .
Cordier P, Tournilhac F O, Soulié-Ziakovic C, Leibler L. Nature , 2008 . 451 977 - 980 . DOI:10.1038/nature06669http://doi.org/10.1038/nature06669 .
Li X P, Yu R, Zhao T T, Zhang Y, Yang X, Zhao X J, Huang W. Eur Polym J , 2019 . 358 878 - 890.
Xiang H P, Rong M Z, Zhang M Q. ACS Sustain Chem Eng , 2016 . 4 2715 - 2724 . DOI:10.1021/acssuschemeng.6b00224http://doi.org/10.1021/acssuschemeng.6b00224 .
Zhang Y H, Yuan L, Liang G Z, Gu A J. J Mater Chem A , 2018 . 6 23425 - 23434 . DOI:10.1039/C8TA07580Hhttp://doi.org/10.1039/C8TA07580H .
Zuo Y J, Gou Z M, Zhang C Q, Feng S Y. Macromol Rapid Commun , 2016 . 37 1052 - 1059 . DOI:10.1002/marc.201600155http://doi.org/10.1002/marc.201600155 .
0
浏览量
90
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构