浏览全部资源
扫码关注微信
1.中国科学院化学研究所 高分子化学与物理实验室 北京 100190
2.山东如意科技集团有限公司 济宁 272000
3.国家纺纱工程技术研究中心 济宁 272000
E-mail: jxu@iccas.ac.cn E-mail: jxu@iccas.ac.cn
纸质出版日期:2020-6,
网络出版日期:2020-4-15,
收稿日期:2019-12-10,
修回日期:2020-1-21,
扫 描 看 全 文
赵晗, 尚晴, 杨萌, 金帅, 王洋洋, 赵宁, 尹晓品, 丁彩玲, 徐坚. ZnO纳米棒改性超高分子量聚乙烯纤维及其性能研究[J]. 高分子学报, 2020,51(6):649-655.
Han Zhao, Qing Shang, Meng Yang, Shuai Jin, Yang-yang Wang, Ning Zhao, Xiao-pin Yin, Cai-ling Ding, Jian Xu. Surface Modification and Properties of UHMWPE Fibers by ZnO Nanorods[J]. Acta Polymerica Sinica, 2020,51(6):649-655.
赵晗, 尚晴, 杨萌, 金帅, 王洋洋, 赵宁, 尹晓品, 丁彩玲, 徐坚. ZnO纳米棒改性超高分子量聚乙烯纤维及其性能研究[J]. 高分子学报, 2020,51(6):649-655. DOI: 10.11777/j.issn1000-3304.2019.19208.
Han Zhao, Qing Shang, Meng Yang, Shuai Jin, Yang-yang Wang, Ning Zhao, Xiao-pin Yin, Cai-ling Ding, Jian Xu. Surface Modification and Properties of UHMWPE Fibers by ZnO Nanorods[J]. Acta Polymerica Sinica, 2020,51(6):649-655. DOI: 10.11777/j.issn1000-3304.2019.19208.
采用低温水热法在超高分子量聚乙烯(UHMWPE)纤维表面成功制备了致密均匀的ZnO纳米棒阵列,利用纳米棒阵列与树脂形成啮合结构,有效增强了纤维和树脂之间的界面结合强度. 采用扫描电镜(SEM)、示差扫描量热法(DSC)、热重分析(TGA)、X射线衍射(XRD)等手段对纤维改性前后结构与性能变化进行了分析,并通过单丝拔出实验表征了其与环氧树脂间的界面剪切强度(IFSS);探索了反应时间、前驱液浓度对界面性能的影响. 研究结果表明这种改性方法对纤维的本征性能几乎无影响,改性后纤维增重仅5%,而与树脂复合后界面剪切强度提升58%,单丝拨出时破坏发生在纳米棒阵列与纤维之间. 进一步,利用该方法对UHMWPE织物进行改性,发现使用单宁酸可提高纳米棒阵列与纤维之间的结合力,使得到的UHMWPE@ZnO和UHMWPE@TA-ZnO织物的防穿刺能力分别提升20%和42%.
Dense and uniform arrays of ZnO nanorods were successfully formed on the surface of ultra high molecular weight polyethylene (UHMWPE) fiber
via
low temperature hydrothermal method. The resultant microstructure could effectively enhance the interfacial bonding strength between the fiber and the resin due to its ability to form a mechanical meshing structure with the resin. Scanning electron microscopy (SEM)
differential scanning calorimetry (DSC)
thermogravimetric analysis (TGA)
X-ray diffraction (XRD) were used to analyze the structure and properties of UHMWPE fibers before and after modification
and the monofilament pull-out experiment was performed to characterize the interfacial shear strength (IFSS) between the fiber and epoxy resin
exploring the effects of reaction time and precursor concentration on interface properties. The results showed that this gentle modification process had little effect on the intrinsic properties of the fiber
and the IFSS could be 58% higher than that of the unmodified fiber. In addition
the UHMWPE fabric was modified by the similar method
and the puncture work was improved by 20% for the UHMWPE@ZnO fabric. The puncture work was further improved by 42% when tannic acid was introduced at the interface to enhance the binding force between ZnO nanorods and fiber surface.
超高分子量聚乙烯纤维ZnO纳米棒界面剪切穿刺功
Ultra-high molecular weight polyethyleneZnO nanorodsInterfacial shear strengthPuncture work
Smith P, Lemstra P J. J Mate Sci , 1980 . 15 ( 2 ): 505 - 514 . DOI:10.1007/BF02396802http://doi.org/10.1007/BF02396802 .
Thostenson E T, Li W Z, Wang D Z, Ren Z F, Chou T W. J Appl Phys , 2002 . 91 ( 9 ): 6034 - 6037 . DOI:10.1063/1.1466880http://doi.org/10.1063/1.1466880 .
Qin J J, Wang C G, Wang Y X, Lu R J, Zheng L B, Wang X H, Yao Z Q, Gao Q, Wei H Z. Nanotechnology , 2018 . 29 ( 39 ): 395602 DOI:10.1088/1361-6528/aad10chttp://doi.org/10.1088/1361-6528/aad10c .
Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. J Phys Chem B , 2001 . 105 ( 17 ): 3350 - 3352 . DOI:10.1021/jp010026shttp://doi.org/10.1021/jp010026s .
Lin Y R, Ehlert G, Sodano H A. Adv Funct Mater , 2009 . 19 ( 16 ): 2654 - 2660 . DOI:10.1002/adfm.200900011http://doi.org/10.1002/adfm.200900011 .
Zheng N, Huang Y D, Sun W F, Du X S, Liu H Y, Moody S, Gao J F, Mai Y W. Carbon , 2016 . 110 69 - 78 . DOI:10.1016/j.carbon.2016.09.002http://doi.org/10.1016/j.carbon.2016.09.002 .
Qiu J J, Li X M, He W Z, Park S J, Kim H K, Hwang Y H, Lee J H, Kim Y D. Nanotechnology , 2009 . 20 ( 15 ): 155603 DOI:10.1088/0957-4484/20/15/155603http://doi.org/10.1088/0957-4484/20/15/155603 .
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science , 2007 . 316 ( 5825 ): 732 - 735 . DOI:10.1126/science.1140484http://doi.org/10.1126/science.1140484 .
Vayssieres L, Chaneac C, Tronc E, Jolivet J P. J Colloid Interf Sci , 1998 . 205 ( 2 ): 205 - 212 . DOI:10.1006/jcis.1998.5614http://doi.org/10.1006/jcis.1998.5614 .
Lee H K, Kim M S, Yu J S. Nanotechnology , 2011 . 22 ( 44 ): 445602 DOI:10.1088/0957-4484/22/44/445602http://doi.org/10.1088/0957-4484/22/44/445602 .
Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, Mcvay G L. Science , 1994 . 264 ( 5155 ): 48 - 55 . DOI:10.1126/science.264.5155.48http://doi.org/10.1126/science.264.5155.48 .
Vayssieres L. Adv Mater , 2003 . 15 ( 5 ): 464 - 466 . DOI:10.1002/adma.200390108http://doi.org/10.1002/adma.200390108 .
Yamabi S, Imai H. J Mater Chem , 2002 . 12 ( 12 ): 3773 - 3778 . DOI:10.1039/b205384ehttp://doi.org/10.1039/b205384e .
Ehlert G J, Sodano H A. ACS Appl Mater Interfaces , 2009 . 1 ( 8 ): 1827 - 1833 . DOI:10.1021/am900376thttp://doi.org/10.1021/am900376t .
Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J, Yang P D. Angew Chem Int Ed , 2003 . 42 ( 26 ): 3031 - 3034 . DOI:10.1002/anie.200351461http://doi.org/10.1002/anie.200351461 .
Hazarika A, Deka B K, Kim D Y, Kong K, Park Y Bi, Park H W. Compos Part A: Appl S , 2015 . 78 284 - 293 . DOI:10.1016/j.compositesa.2015.08.022http://doi.org/10.1016/j.compositesa.2015.08.022 .
Galan U, Lin Y, Ehlert G J, Sodano H A. Compos Sci Technol , 2011 . 71 ( 7 ): 946 - 954 . DOI:10.1016/j.compscitech.2011.02.010http://doi.org/10.1016/j.compscitech.2011.02.010 .
Jin X, Heepe L, Strueben J, Adelung R, Gorb S N, Staubitz A. Macromol Rapid Commun , 2014 . 35 ( 18 ): 1551 - 1570 . DOI:10.1002/marc.201400200http://doi.org/10.1002/marc.201400200 .
Xu Yang(徐杨), Li Dun(李顿), Shen Jiabin(沈佳斌), Guo Shaoyun(郭少云), Sue H J . 2018 . ( 10 ): 1262 - 1278 . DOI:10.11777/j.issn1000-3304.2018.18089http://doi.org/10.11777/j.issn1000-3304.2018.18089 .
Jin X, Strueben J, Heepe L, Kovalev A, Mishra Y K, Adelung R, Gorb S N, Staubitz A. Adv Mater , 2012 . 24 ( 42 ): 5676 - 5680 . DOI:10.1002/adma.201201780http://doi.org/10.1002/adma.201201780 .
Su G M, Best K, Ranganathan T, Emrick T, Crosby A J. Macromolecules , 2011 . 44 ( 13 ): 5256 - 5261 . DOI:10.1021/ma200561ghttp://doi.org/10.1021/ma200561g .
Chan E P, Smith E J, Hayward R C, Crosby, A J. Adv Mater , 2008 . 20 ( 4 ): 711 - 715 . DOI:10.1002/adma.200701530http://doi.org/10.1002/adma.200701530 .
Kong K, Deka B K, Kwak S K, Oh A, Kim H, Park Y B, Park H W. Compos Part A: Appl S , 2013 . 55 152 - 160 . DOI:10.1016/j.compositesa.2013.08.013http://doi.org/10.1016/j.compositesa.2013.08.013 .
Chen Ping(陈平), Yu Qi(于祺), Xiong Xuhai(熊需海), Liu Dong(刘东), Liu Zhe(刘哲), Jia Caixia(贾彩霞). Acta Polymerica Sinica(高分子学报) , 2018 . ( 3 ): 323 - 335 . DOI:10.11777/j.issn1000-3304.2017.17081http://doi.org/10.11777/j.issn1000-3304.2017.17081 .
Zhao Han(赵晗), Shang Qing(尚晴), Yang Meng(杨萌), Jin Shuai(金帅), Wang Yangyang(王洋洋), Zhao Ning(赵宁), Yin Xiaopin(尹晓品), Ding Cailing(丁彩玲), Xu Jian(徐坚). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 3 ): 287 - 294 . DOI:10.11777/j.issn1000-3304.2019.19172http://doi.org/10.11777/j.issn1000-3304.2019.19172 .
0
浏览量
47
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构