浏览全部资源
扫码关注微信
材料先进技术教育部重点实验室 西南交通大学 成都 610031
E-mail:baoyu@swjtu.edu.cn Yu Bao, E-mail: baoyu@swjtu.edu.cn
纸质出版日期:2020-7,
网络出版日期:2020-5-19,
收稿日期:2020-1-15,
修回日期:2020-1-30,
扫 描 看 全 文
许俊, 曹楠普, 肖尧鑫, 罗仲龙, 鲍雨, 崔树勋. 聚乙二醇生物相容性与结合水关系的单分子力谱研究[J]. 高分子学报, 2020,51(7):754-761.
Jun Xu, Nan-pu Cao, Yao-xin Xiao, Zhong-long Luo, Yu Bao, Shu-xun Cui. Revealing the Relationship between the Biocompatibility and the Bound Water of Poly(ethylene glycol) by Single-molecule Force Spectroscopy[J]. Acta Polymerica Sinica, 2020,51(7):754-761.
许俊, 曹楠普, 肖尧鑫, 罗仲龙, 鲍雨, 崔树勋. 聚乙二醇生物相容性与结合水关系的单分子力谱研究[J]. 高分子学报, 2020,51(7):754-761. DOI: 10.11777/j.issn1000-3304.2019.19219.
Jun Xu, Nan-pu Cao, Yao-xin Xiao, Zhong-long Luo, Yu Bao, Shu-xun Cui. Revealing the Relationship between the Biocompatibility and the Bound Water of Poly(ethylene glycol) by Single-molecule Force Spectroscopy[J]. Acta Polymerica Sinica, 2020,51(7):754-761. DOI: 10.11777/j.issn1000-3304.2019.19219.
聚乙二醇(PEG)优良的生物相容性使得其在生物材料领域的应用十分广泛,但关于其具有良好生物相容性的分子机理依然不清楚. 本文利用单分子力谱技术研究了PEG生物相容性与其结合水之间的关系. PEG在非极性有机溶剂-壬烷及磷酸盐缓冲液(PBS)中的力-距离(
F
-
E
)曲线之间存在显著的差异. 通过实验分析及单分子理论模型验证发现这一差异主要是由PEG结合水重排所导致的. 对壬烷及PBS中的
F
-
E
曲线间的面积差进行积分得到PEG结合水重排所额外消耗的能量(
E
w
)为 ~ 1.59
k
B
T
/unit (3.93 kJ/mol). 通过对比发现,此
E
w
与生物大分子的
E
w
最为接近. 我们推测这一与生物大分子相近的
E
w
值保证了PEG在生物体内既不会引起严重的能量波动也不会影响其他分子的行为,这可能是PEG具有优良生物相容性的一个重要因素.
Poly(ethylene glycol) (PEG) has become the “superstar” in the field of biological materials due to its excellent biocompatibility. However
the molecular mechanism underlying its biocompatibility is still unclear. In this work
we have investigated the relationship between the biocompatibility and the bound water of PEG by single-molecule force spectroscopy (SMFS). To discern the effect of bound water on PEG in an aqueous solution
the single-chain inherent elasticity of PEG should be determined first as a reference. The inherent elasticity of PEG is obtained in a small-sized nonpolar organic solvent
nonane
which is confirmed by the quantum mechanical calculations-based freely rotating chain model (QM-FRC model). Then
SMFS experiments have been performed in phosphate-buffered saline (PBS) to study the effect of bound water on PEG. The shoulder plateau in the force-extension (
F
-
E
) curve of PEG obtained in PBS should be caused by the rearrangement of the bound water (water bridge) during the PEG elongation. This assumption has been confirmed by the two states QM-FRC model (TSQM-FRC model)
which takes into account the effect of the water bridge. This bound water rearrangement will consume additional energy (
E
w
) besides that for the inherent elasticity of the chain. This
E
w
is calculated to be ~ 1.59
k
B
T
/unit (3.93 kJ/mol) by integrating the area between the
F
-
E
curves of PEG obtained in PBS and nonane
closed to those of biomacromolecules. Inspired by the relationship between the low
E
w
and the behaviors of biomacromolecules
we have speculated the relationship between the biocompatibility and the bound water of PEG: (1) Like those of biomacromolecules
this
E
w
makes sure that the conformational transition of PEG in blood or cell will not consume (or produce) too much energy. Thus
the energy disturbance caused by PEG can be borne by the organism. (2) An appropriate
E
w
can prevent the aggregation of biomacromolecules and PEG. Biomacromolecules can self-assemble into the high-level structure after partial dehydration. If PEG has no bound water (
E
w
= 0)
PEG may aggregate with the partially dehydrated biomacromolecules and then cause a series of consequences. In one word
the
E
w
closed to those of biomacromolecules may be an important factor for the excellent biocompatibility of PEG.
聚乙二醇生物相容性结合水单分子力谱
Poly(ethylene glycol)BiocompatibilityBound waterSingle-molecule force spectroscopy
Fruijtier-Polloth C. Toxicology , 2005 . 214 1 - 38 . DOI:10.1016/j.tox.2005.06.001http://doi.org/10.1016/j.tox.2005.06.001 .
Qiao C. Polym Bull , 2010 . 3 23 - 30.
Green J J, Elisseeff J H. Nature , 2016 . 540 386 - 394 . DOI:10.1038/nature21005http://doi.org/10.1038/nature21005 .
Knop K, Hoogenboom R, Fischer D, Schubert U S. Angew Chem Int Ed , 2010 . 49 6288 - 6308 . DOI:10.1002/anie.200902672http://doi.org/10.1002/anie.200902672 .
Kwon G S, Kataoka K. Adv Drug Deliv Rev , 2012 . 64 237 - 245 . DOI:10.1016/j.addr.2012.09.016http://doi.org/10.1016/j.addr.2012.09.016 .
Banerjee I, Pangule R C, Kane R S. Adv Mater , 2011 . 23 690 - 718 . DOI:10.1002/adma.201001215http://doi.org/10.1002/adma.201001215 .
Guichard M J, Leal T, Vanbever R. Curr Opin Colloid In , 2017 . 31 43 - 50 . DOI:10.1016/j.cocis.2017.08.001http://doi.org/10.1016/j.cocis.2017.08.001 .
Turecek P L, Bossard M J, Schoetens F, Ivens I A. J Pharm Sci , 2016 . 105 460 - 475 . DOI:10.1016/j.xphs.2015.11.015http://doi.org/10.1016/j.xphs.2015.11.015 .
Roberts M J, Bentley M D, Harris J M. Adv Drug Deliv Rev , 2012 . 64 116 - 127 . DOI:10.1016/j.addr.2012.09.025http://doi.org/10.1016/j.addr.2012.09.025 .
Hunter A C. Adv Drug Deliv Rev , 2006 . 58 1523 - 1531 . DOI:10.1016/j.addr.2006.09.008http://doi.org/10.1016/j.addr.2006.09.008 .
Shaffer C B, Critchfield F H, Nair III J H. J Am Pharm Assoc Sci Ed , 1950 . 39 340 - 344 . DOI:10.1002/jps.3030390613http://doi.org/10.1002/jps.3030390613 .
Smyth Jr H F, Carpenter C P, Weil C S.. J Am Pharm Assoc Sci Ed , 1950 . 39 349 - 354 . DOI:10.1002/jps.3030390615http://doi.org/10.1002/jps.3030390615 .
Xu L, Yang J, Xue B, Zhang C, Shi L, Wu C, Su Y, Jin X, Liu Y, Zhu X. Biomaterials , 2017 . 147 1 - 13 . DOI:10.1016/j.biomaterials.2017.09.002http://doi.org/10.1016/j.biomaterials.2017.09.002 .
Tanaka M, Sato K, Kitakami E, Kobayashi S, Hoshiba T, Fukushima K. Polym J , 2015 . 47 114 - 121 . DOI:10.1038/pj.2014.129http://doi.org/10.1038/pj.2014.129 .
Ball P. Chem Rev , 2008 . 108 74 - 108 . DOI:10.1021/cr068037ahttp://doi.org/10.1021/cr068037a .
Whitesides G M. Angew Chem Int Ed , 2015 . 54 3196 - 3209 . DOI:10.1002/anie.201410884http://doi.org/10.1002/anie.201410884 .
Cui S. Phys Chem Chem Phys , 2010 . 12 10147 - 10153 . DOI:10.1039/c002414ghttp://doi.org/10.1039/c002414g .
Cheng B, Cui S. Chinese J Polym Sci , 2018 . 36 379 - 384 . DOI:10.1007/s10118-018-2082-2http://doi.org/10.1007/s10118-018-2082-2 .
He C, Li S, Gao X, Xiao A, Hu C, Hu X, Hu X, Li H. Nanoscale , 2019 . 11 3945 - 3951 . DOI:10.1039/C8NR10070Ehttp://doi.org/10.1039/C8NR10070E .
Cai W, Xiao C, Qian L, Cui S. Nano Res , 2019 . 12 57 - 61 . DOI:10.1007/s12274-018-2176-8http://doi.org/10.1007/s12274-018-2176-8 .
Liu C, Kubo K, Wang E, Han K S, Yang F, Chen G, Escobedo F A, Coates G W, Chen P. Science , 2017 . 358 352 - 355 . DOI:10.1126/science.aan6837http://doi.org/10.1126/science.aan6837 .
Ma Z, Yang P, Zhang X, Jiang K, Song Y, Zhang W. ACS Macro Lett , 2019 . 8 1194 - 1199 . DOI:10.1021/acsmacrolett.9b00607http://doi.org/10.1021/acsmacrolett.9b00607 .
Zhang S, Qian H, Liu Z, Ju H, Lu Z, Zhang H, Chi L, Cui S. Angew Chem Int Ed , 2019 . 58 1659 - 1663 . DOI:10.1002/anie.201811152http://doi.org/10.1002/anie.201811152 .
Fu L, Wang H, Li H. CCS Chemistry , 2019 . 1 138 - 147 . DOI:10.31635/ccschem.019.20180012http://doi.org/10.31635/ccschem.019.20180012 .
Di W, Gao X, Huang W, Sun Y, Lei H, Liu Y, Li W, Li Y, Wang, X, Qin M, Zhu Z, Cao Y, Wang W. Phys Rev Lett , 2019 . 122 047801 DOI:10.1103/PhysRevLett.122.047801http://doi.org/10.1103/PhysRevLett.122.047801 .
Deng Y, Wu T, Wang M, Shi S, Yuan G, Li X, Chong H, Wu B, Zheng P. Nat Commun , 2019 . 10 2775 DOI:10.1038/s41467-019-10696-xhttp://doi.org/10.1038/s41467-019-10696-x .
Xiang W, Li Z, Xu C, Li J, Zhang W, Xu H. Chem-Asian J , 2019 . 14 1481 - 1486 . DOI:10.1002/asia.201900332http://doi.org/10.1002/asia.201900332 .
Bao Y, Xu D, Qian L, Zhao L, Lu Z, Cui S. Nanoscale , 2017 . 9 3382 - 3385 . DOI:10.1039/C7NR00198Chttp://doi.org/10.1039/C7NR00198C .
Tan X, Litau S, Zhang X, Muller J. Langmuir , 2015 . 31 11305 - 11310 . DOI:10.1021/acs.langmuir.5b03183http://doi.org/10.1021/acs.langmuir.5b03183 .
Florin E L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy V T, Gaub H E. Biosens Bioelectron , 1995 . 10 895 - 901 . DOI:10.1016/0956-5663(95)99227-Chttp://doi.org/10.1016/0956-5663(95)99227-C .
Butt H J, Jaschke M. Nanotechnology , 1995 . 6 1 - 7 . DOI:10.1088/0957-4484/6/1/001http://doi.org/10.1088/0957-4484/6/1/001 .
Evans E. Annu Rev Biophys Biomol Struct , 2001 . 30 105 - 128 . DOI:10.1146/annurev.biophys.30.1.105http://doi.org/10.1146/annurev.biophys.30.1.105 .
Hugel T, Seitz M. Macromol Rapid Commun , 2001 . 22 989 - 1016 . DOI:10.1002/1521-3927(20010901)22:13<989::AID-MARC989>3.0.CO;2-Dhttp://doi.org/10.1002/1521-3927(20010901)22:13<989::AID-MARC989>3.0.CO;2-D .
Luo Z, Zhang B, Qian H, Lu Z, Cui S. Nanoscale , 2016 . 8 17820 - 17827 . DOI:10.1039/C6NR05863Ahttp://doi.org/10.1039/C6NR05863A .
Hugel T, Rief M, Seitz M, Gaub H E, Netz R R. Phys Rev Lett , 2005 . 94 048301 DOI:10.1103/PhysRevLett.94.048301http://doi.org/10.1103/PhysRevLett.94.048301 .
Livadaru L, Netz R R, Kreuzer H J. Macromolecules , 2003 . 36 3732 - 3744 . DOI:10.1021/ma020751ghttp://doi.org/10.1021/ma020751g .
Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E. Science , 1999 . 283 1727 - 1730 . DOI:10.1126/science.283.5408.1727http://doi.org/10.1126/science.283.5408.1727 .
Begum R, Matsuura H. J Chem Soc, Faraday Trans , 1997 . 93 3839 - 3848 . DOI:10.1039/a703436ihttp://doi.org/10.1039/a703436i .
Cai W, Lu S, Wei J, Cui S. Macromolecules , 2019 . 52 7324 - 7330 . DOI:10.1021/acs.macromol.9b01542http://doi.org/10.1021/acs.macromol.9b01542 .
Rief M, Fernandez J M, Gaub H E. Phys Rev Lett , 1998 . 81 4764 - 4767 . DOI:10.1103/PhysRevLett.81.4764http://doi.org/10.1103/PhysRevLett.81.4764 .
Bell G I. Science , 1978 . 200 618 - 627 . DOI:10.1126/science.347575http://doi.org/10.1126/science.347575 .
Evans E, Ritchie K. Biophys J , 1997 . 72 1541 - 1555 . DOI:10.1016/S0006-3495(97)78802-7http://doi.org/10.1016/S0006-3495(97)78802-7 .
Oesterhelt F, Rief M, Gaub H E. New J Phys , 1999 . 1 6.1 - 6.11 . DOI:10.1088/1367-2630/1/1/006http://doi.org/10.1088/1367-2630/1/1/006 .
Liese S, Gensler M, Krysiak S, Schwarzl R, Achazi A, Paulus B, Hugel T, Rabe J P, Netz R R. ACS Nano , 2017 . 11 702 - 712 . DOI:10.1021/acsnano.6b07071http://doi.org/10.1021/acsnano.6b07071 .
Kolberg A, Wenzel C, Hackenstrass K, Schwarzl R, Ruettiger C, Hugel T, Gallei M, Netz R R, Balzer B N. J Am Chem Soc , 2019 . 141 11603 - 11613 . DOI:10.1021/jacs.9b04383http://doi.org/10.1021/jacs.9b04383 .
Cui S, Albrecht C, Kuhner F, Gaub H E. J Am Chem Soc , 2006 . 128 6636 - 6639 . DOI:10.1021/ja0582298http://doi.org/10.1021/ja0582298 .
Luo Z, Cheng B, Cui S. Langmuir , 2015 . 31 6107 - 6113 . DOI:10.1021/acs.langmuir.5b01313http://doi.org/10.1021/acs.langmuir.5b01313 .
Liu C, Cui S, Wang Z, Zhang X. J Phys Chem B , 2005 . 109 14807 - 14812 . DOI:10.1021/jp050227mhttp://doi.org/10.1021/jp050227m .
Cui S, Pang X, Zhang S, Yu Y, Ma H, Zhang X. Langmuir , 2012 . 28 5151 - 5157 . DOI:10.1021/la300135whttp://doi.org/10.1021/la300135w .
0
浏览量
36
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构