浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
[ "尤伟,男,1989年生. 2011年于清华大学获得理学学士学位;2016年于美国印第安纳大学布鲁明顿分校获得理学博士学位,导师为M. Kevin Brown教授. 2016 ~ 2019年于美国康奈尔大学从事博士后研究,导师为Geoffrey W. Coates教授. 2019年11月起,于中国科学院化学研究所工程塑料实验室任项目研究员、课题组长,主要从事新型碱性阴离子交换隔膜的设计与合成,对有机化学、高分子化学与电化学的前沿交叉领域进行探究" ]
纸质出版日期:2020-9-1,
网络出版日期:2020-7-27,
收稿日期:2020-5-15,
修回日期:2020-6-1,
扫 描 看 全 文
陆祺然, 尤伟. 基于聚乙烯的阴离子交换隔膜的制备策略[J]. 高分子学报, 2020,51(10):1140-1146.
Qi-ran Lu, Wei You. Synthetic Strategies towards Anion Exchange Membranes with Polyethylene Backbones[J]. Acta Polymerica Sinica, 2020,51(10):1140-1146.
陆祺然, 尤伟. 基于聚乙烯的阴离子交换隔膜的制备策略[J]. 高分子学报, 2020,51(10):1140-1146. DOI: 10.11777/j.issn1000-3304.2020.10123.
Qi-ran Lu, Wei You. Synthetic Strategies towards Anion Exchange Membranes with Polyethylene Backbones[J]. Acta Polymerica Sinica, 2020,51(10):1140-1146. DOI: 10.11777/j.issn1000-3304.2020.10123.
随着人们对生活环境的保护和对可持续发展的需求与日俱增,对于能够实现清洁、高效、廉价能源转化的电化学设备的研究也日益深入. 当这些设备在碱性环境下运行时,可以传输氢氧根的阴离子交换膜(AEM)就是核心部件之一,而AEM的离子导电性和碱性稳定性直接关系着设备的能量转化效率和耐久性. 具有聚乙烯骨架的阴离子交换膜(PE-AEM)由于其化学稳定性突出、阳离子兼容性好、机械性能柔韧等优点,近些年来受到了广泛的关注. 本专论归纳了PE-AEM的合成策略,包括聚合氢化法、直接共聚法和后修饰接枝法,在其中着重介绍环辛烯开环易位聚合(ROMP)后还原方法的发展历程,比较不同制备路线的优缺点,总结产物的化学结构和性能的关系,并且对PE-AEM的前景进行了展望.
With the emerging demand of environmental protection and sustainable development
devices that can perform clean
efficient
and inexpensive energy conversion (
e.g.
alkaline fuel cells
water electrolysis
redox flow batteries
etc.
) have attracted increasing attention. Anion exchange membranes (AEMs) are a class of solid polyelectrolytes that are key components in the above-mentioned alkaline energy conversion devices to transport hydroxide anions. Two of the key properties of AEMs are ionic conductivity and alkaline stability
as they are directly related to the efficiency and durability of the devices
respectively. The AEMs bearing polyethylene backbones (PE-AEMs) have outstanding chemical stability
good compatibility with various cations
and strong mechanical properties
and thus they become promising candidates for high-performance AEMs. In this account
we summarize the synthetic strategies of PE-AEMs
which include ring-opening-metathesis polymerization (ROMP) followed by hydrogenation
derivatization of poly(ethylene-
co
-styrene)
direct copolymerization of functionalized terminal alkenes with ethylene
and radiation graft to modify polyethylene films. Among all these strategies
we specifically focus on the development of sequential cyclooctene ROMP and hydrogenation strategy
as it has the advantages of well-defined polymer structures
precise control of functionality distribution
and excellent tolerance to diverse functional groups. We also evaluate the structure-property relationship of the resultant PE-AEM membranes and discuss the future of these materials.
阴离子交换膜聚乙烯合成策略碱性稳定性
Anion exchange membranePolyethyleneSynthetic strategyAlkaline stability
You W, Noonan K J T, Coates G W. Prog Polym Sci , 2020 . 100 101177 DOI:10.1016/j.progpolymsci.2019.101177http://doi.org/10.1016/j.progpolymsci.2019.101177 .
Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Energy Environ Sci , 2014 . 7 ( 10 ): 3135 - 3191 . DOI:10.1039/C4EE01303Dhttp://doi.org/10.1039/C4EE01303D .
Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T. J Membr Sci , 2017 . 522 267 - 291 . DOI:10.1016/j.memsci.2016.09.033http://doi.org/10.1016/j.memsci.2016.09.033 .
Li Shengping(李圣平), Xia Chenchao(夏晨超), Yao Lizhu(姚丽珠), Wang Lulu(王璐璐), Wang Jilin(王吉林). Chem Eng(化学工程师) , 2015 . 235 ( 4 ): 50 - 54 . DOI:10.16247/j.cnki.23-1171/tq.20150450http://doi.org/10.16247/j.cnki.23-1171/tq.20150450 .
Gottesfeld S, Dekel D R, Page M, Bae C, Yan Y, Zelenay P, Kim Y S. J Power Sources , 2018 . 375 170 - 184 . DOI:10.1016/j.jpowsour.2017.08.010http://doi.org/10.1016/j.jpowsour.2017.08.010 .
Gao Li(高莉), Wu Xuemei(吴雪梅), Yan Xiaoming(焉晓明), Gong Xue(宫雪), Chen Wanting(陈婉婷), Li Tiantian(李甜甜), He Gaohong(贺高红). Chin Sci Bull(科学通报) , 2019 . 64 ( 2 ): 145 - 152 . DOI:10.1360/N972018-00770http://doi.org/10.1360/N972018-00770 .
Sun Z, Lin B, Yan F. ChemSusChem , 2018 . 11 ( 1 ): 58 - 70 . DOI:10.1002/cssc.201701600http://doi.org/10.1002/cssc.201701600 .
Hugar K M, You W, Coates G W. ACS Energy Lett , 2019 . 4 1681 - 1686 . DOI:10.1021/acsenergylett.9b00908http://doi.org/10.1021/acsenergylett.9b00908 .
Arges C G, Ramani V. Proc Natl Acad Sci USA , 2013 . 110 ( 7 ): 2490 - 2495 . DOI:10.1073/pnas.1217215110http://doi.org/10.1073/pnas.1217215110 .
Park E J, Kim Y S. J Mater Chem A , 2018 . 6 ( 32 ): 15456 - 15477 . DOI:10.1039/C8TA05428Bhttp://doi.org/10.1039/C8TA05428B .
Yang K, Chu X, Zhang X, Li X, Zheng J, Li S, Li N, Sherazi T A, Zhang S. J Membr Sci , 2020 . 603 118025 DOI:10.1016/j.memsci.2020.118025http://doi.org/10.1016/j.memsci.2020.118025 .
Liu Lei(刘磊), Chu Xiaomeng(褚晓萌), Li Nanwen(李南文). Chin Sci Bull(科学通报) , 2019 . 64 ( 2 ): 123 - 133 . DOI:10.1360/N972018-00880http://doi.org/10.1360/N972018-00880 .
Matanovic I, Maurya S, Park E J, Jeon J Y, Bae C, Kim Y S. Chem Mater , 2019 . 31 ( 11 ): 4195 - 4204 . DOI:10.1021/acs.chemmater.9b01092http://doi.org/10.1021/acs.chemmater.9b01092 .
Martinez H, Ren N, Matta M E, Hillmyer M A. Polym Chem , 2014 . 5 ( 11 ): 3507 - 3532 . DOI:10.1039/c3py01787ghttp://doi.org/10.1039/c3py01787g .
Aitken B S, Buitrago C F, Heffley J D, Lee M, Gibson H W, Winey K I, Wagener K B. Macromolecules , 2012 . 45 ( 2 ): 681 - 687 . DOI:10.1021/ma202304shttp://doi.org/10.1021/ma202304s .
Li Y, Liu Y, Savage A M, Beyer F L, Seifert S, Herring A M, Knauss D M. Macromolecules , 2015 . 48 ( 18 ): 6523 - 6533 . DOI:10.1021/acs.macromol.5b01457http://doi.org/10.1021/acs.macromol.5b01457 .
Liu C, Chun S B, Mather P T, Zheng L, Haley E H, Coughlin E B. Macromolecules , 2002 . 35 ( 27 ): 9868 - 9874 . DOI:10.1021/ma021141jhttp://doi.org/10.1021/ma021141j .
Kostalik IV H A, Clark T J, Robertson N J, Mutolo P F, Longo J M, Abruña H D, Coates G W. Macromolecules , 2010 . 43 ( 17 ): 7147 - 7150 . DOI:10.1021/ma101172ahttp://doi.org/10.1021/ma101172a .
Hillmyer M A, Laredo W R, Grubbs R H. Macromolecules , 1995 . 28 6311 - 6316 . DOI:10.1021/ma00122a043http://doi.org/10.1021/ma00122a043 .
Robertson N J, Kostalik IV H A, Clark T J, Mutolo P F, Abruña H D, Coates G W. J Am Chem Soc , 2010 . 132 ( 10 ): 3400 - 3404 . DOI:10.1021/ja908638dhttp://doi.org/10.1021/ja908638d .
Noonan K J T, Hugar K M, Kostalik IV H A, Lobkovsky E B, Abruña H D, Coates G W. J Am Chem Soc , 2012 . 134 ( 44 ): 18161 - 18164 . DOI:10.1021/ja307466shttp://doi.org/10.1021/ja307466s .
Hugar K M, Kostalik IV H A, Coates G W. J Am Chem Soc , 2015 . 137 ( 27 ): 8730 - 8737 . DOI:10.1021/jacs.5b02879http://doi.org/10.1021/jacs.5b02879 .
You W, Hugar K M, Coates G W. Macromolecules , 2018 . 51 ( 8 ): 3212 - 3218 . DOI:10.1021/acs.macromol.8b00209http://doi.org/10.1021/acs.macromol.8b00209 .
You W, Padgett E, MacMillan S N, Muller D A, Coates G W. Proc Natl Acad Sci USA , 2019 . 116 ( 20 ): 9729 - 9734 . DOI:10.1073/pnas.1900988116http://doi.org/10.1073/pnas.1900988116 .
Walker R, Conrad R M, Grubbs R H. Macromolecules , 2009 . 42 ( 3 ): 599 - 605 . DOI:10.1021/ma801693qhttp://doi.org/10.1021/ma801693q .
Zhu T, Xu S, Rahman A, Dogdibegovic E, Yang P, Pageni P, Kabir M P, Zhou X D, Tang C. Angew Chem Int Ed , 2018 . 57 ( 9 ): 2388 - 2392 . DOI:10.1002/anie.201712387http://doi.org/10.1002/anie.201712387 .
Zhu T, Sha Y, Firouzjaie H A, Peng X, Cha Y, Dissanayake D M M M, Smith M D, Vannucci A K, Mustain W E, Tang C. J Am Chem Soc , 2020 . 142 ( 2 ):1083 - 1089 . DOI:10.1021/jacs.9b12051http://doi.org/10.1021/jacs.9b12051 .
Aitken B S, Lee M, Hunley M T, Gibson H W, Wagener K B. Macromolecules , 2010 . 43 ( 4 ): 1699 - 1701 . DOI:10.1021/ma9024174http://doi.org/10.1021/ma9024174 .
Buggy N C, Du Y, Kuo M C, Ahrens K A, Wilkinson J S, Seifert S, Coughlin E B, Herring A M. ACS Appl Polym Mater , 2020 . 2 ( 3 ): 1294 - 1303 . DOI:10.1021/acsapm.9b01182http://doi.org/10.1021/acsapm.9b01182 .
Noh S, Jeon J Y, Adhikari S, Kim Y S, Bae C. Acc Chem Res , 2019 . 52 ( 9 ): 2745 - 2755 . DOI:10.1021/acs.accounts.9b00355http://doi.org/10.1021/acs.accounts.9b00355 .
Liu L, Li D, Xing Y, Li N. J Membr Sci , 2018 . 564 428 - 435 . DOI:10.1016/j.memsci.2018.07.055http://doi.org/10.1016/j.memsci.2018.07.055 .
Jian Z, Leicht H, Mecking S. Macromol Rapid Commun , 2016 . 37 ( 11 ): 934 - 938 . DOI:10.1002/marc.201600073http://doi.org/10.1002/marc.201600073 .
Zhang M, Kim H K, Chalkova E, Mark F, Lvov S N, Chung T C M. Macromolecules , 2011 . 44 ( 15 ): 5937 - 5946 . DOI:10.1021/ma200836dhttp://doi.org/10.1021/ma200836d .
Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报) , 2018 . (11) 1372 - 1384 . DOI:10.11777/j.issn1000-3304.2018.18155http://doi.org/10.11777/j.issn1000-3304.2018.18155 .
Chen C. Nat Rev Chem , 2018 . 2 ( 5 ): 6 - 14 . DOI:10.1038/s41570-018-0003-0http://doi.org/10.1038/s41570-018-0003-0 .
Tan C, Chen C. Angew Chem Int Ed , 2019 . 58 ( 22 ): 7192 - 7200 . DOI:10.1002/anie.201814634http://doi.org/10.1002/anie.201814634 .
Hong C, Wang X, Chen C. Macromolecules , 2019 . 52 ( 18 ): 7123 - 7129 . DOI:10.1021/acs.macromol.9b01484http://doi.org/10.1021/acs.macromol.9b01484 .
Liang T, Goudari S B, Chen C. Nat Commun , 2020 . 11 ( 1 ): 372 .
Chen J, Gao Y, Wang B, Lohr T L, Marks T J. Angew Chem Int Ed , 2017 . 56 ( 50 ): 15964 - 15968 . DOI:10.1002/anie.201708797http://doi.org/10.1002/anie.201708797 .
Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. J Mater Chem A , 2015 . 3 ( 23 ): 12284 - 12296 . DOI:10.1039/C5TA01420Dhttp://doi.org/10.1039/C5TA01420D .
Mandal M, Huang G, Kohl P A. ACS Appl Energy Mater , 2019 . 2 ( 4 ): 2447 - 2457 . DOI:10.1021/acsaem.8b02051http://doi.org/10.1021/acsaem.8b02051 .
Zhu L, Peng X, Shang S L, Kwasny M T, Zimudzi T J, Yu X, Saikia N, Pan J, Liu Z K, Tew G N, Mustain W E, Yandrasits M, Hickner M A. Adv Funct Mater , 2019 . 29 ( 26 ): 1902059 DOI:10.1002/adfm.201902059http://doi.org/10.1002/adfm.201902059 .
Mandal M, Huang G, Hassan N U, Peng X, Gu T, Brooks-Starks A H, Bahar B, Mustain W E, Kohl P A. J Electrochem Soc , 2020 . 167 ( 5 ): 054501 DOI:10.1149/2.0022005JEShttp://doi.org/10.1149/2.0022005JES .
Zhou T, Shao R, Chen S, He X, Qiao J, Zhang J. J Power Sources , 2015 . 293 946 - 975 . DOI:10.1016/j.jpowsour.2015.06.026http://doi.org/10.1016/j.jpowsour.2015.06.026 .
Wang L, Magliocca E, Cunningham E L, Mustain W E, Poynton S D, Escudero-Cid R, Nasef M M, Ponce-González J, Bance-Souahli R, Slade R C T, Whelligan D K, Varcoe J R. Green Chem , 2017 . 19 ( 3 ): 831 - 843 . DOI:10.1039/C6GC02526Ahttp://doi.org/10.1039/C6GC02526A .
Wang L, Bellini M, Miller H A, Varcoe J R. J Mater Chem A , 2018 . 6 ( 31 ): 15404 - 15412 . DOI:10.1039/C8TA04783Ahttp://doi.org/10.1039/C8TA04783A .
Wang L, Peng X, Mustain W E, Varcoe J R. Energy Environ Sci , 2019 . 12 ( 5 ): 1575 - 1579 . DOI:10.1039/C9EE00331Bhttp://doi.org/10.1039/C9EE00331B .
0
浏览量
157
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构