浏览全部资源
扫码关注微信
1.北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室 北京 100029
2.青岛科技大学 橡塑材料与工程教育部重点实验室 青岛 266042
[ "任忠杰,男,1981年生. 北京化工大学材料科学与工程学院教授,2009年在中国科学院化学研究所获得博士学位,2009 ~ 2011年在北京化工大学从事博士后研究并留校任教. 2014 ~ 2015年在英国杜伦大学做访问学者/博士后研究. 曾获“北京化工大学青年百人计划”、“北京高校青年英才计划”和“国家优秀青年科学基金”资助. 主要研究方向是有机和高分子发光材料合成、凝聚态调控及其光电器件" ]
纸质出版日期:2020-5,
网络出版日期:2020-4-15,
收稿日期:2019-12-30,
修回日期:2020-1-17,
扫 描 看 全 文
华磊, 闫寿科, 任忠杰. 聚合物热激活延迟荧光材料的分子设计与器件性能[J]. 高分子学报, 2020,51(5):457-468.
Lei Hua, Shou-ke Yan, Zhong-jie Ren. Molecular Design and Device Performance of Thermally Activated Delayed Fluorescent Polymer Materials[J]. Acta Polymerica Sinica, 2020,51(5):457-468.
华磊, 闫寿科, 任忠杰. 聚合物热激活延迟荧光材料的分子设计与器件性能[J]. 高分子学报, 2020,51(5):457-468. DOI: 10.11777/j.issn1000-3304.2020.19224.
Lei Hua, Shou-ke Yan, Zhong-jie Ren. Molecular Design and Device Performance of Thermally Activated Delayed Fluorescent Polymer Materials[J]. Acta Polymerica Sinica, 2020,51(5):457-468. DOI: 10.11777/j.issn1000-3304.2020.19224.
聚合物热激活延迟荧光(TADF)材料应用于有机发光二极管(OLEDs)中以来,取得了飞速发展,迄今为止已经报道了多种不同分子结构及性能优异的聚合物TADF发光材料. 它们具有不含重金属的化学结构、100%的理论内量子效率和易于通过溶液加工进行大面积制造的优势. 本文从分子结构和发光颜色2个角度总结了不同结构TADF聚合物的研究进展,重点介绍了我们课题组在长链型TADF聚合物设计与OLEDs器件性能方面的研究工作,探究TADF聚合物颜色调控与效率提升的途径,论述了TADF聚合物存在的问题与未来发展.
Thermally activated delayed fluorescence (TADF) polymer materials have achieved rapid development since their application in organic light emitting diodes (OLEDs). So far
various TADF polymer materials with different molecular structures and excellent properties have been reported
of which external quantum efficiency of OLEDs have achieved 23.5%. They possess all-organic chemical structures without heavy metals
100% theoretical internal quantum efficiency
and the advantages of large-area manufacturing by solution process. Nevertheless
when using polymers to develop low-cost display or device
there are still many problems to be overcome
such as
the lower quantum efficiency compared to small molecules
efficiency roll-off at high brightness
and poor device stability. In addition
the efficiency development of devices with different colors of light is obviously uneven and the efficiency of high-color purity devices is poor. Herein
we summarize the research progresses of TADF polymers with different structures and discuss the efficiency development of three primary colors and white OLEDs devices. The emphasis of this review is especially focused on our research work on linear TADF polymers design and their LOEDs device performance
and summarizes our research on TADF polymer color tuning and efficiency inprovement. In addition
the problems and future development of TADF polymers were also discussed in the end.
热激活延迟荧光聚合物溶液加工有机发光二极管
Thermally activated delayed fluorescencePolymerSolution processingOrganic light-emitting diodes
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥),Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽),Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛). Acta Polymarica Sinica(高分子学报) , 2019 . 50 ( 10 ): 988 - 1046.
Tang C W, van Slyke S A. Appl Phys Lett , 1987 . 51 ( 12 ): 913 - 915 . DOI:10.1063/1.98799http://doi.org/10.1063/1.98799 .
AlSalhi M S, Alam J, Dass L A, Raja M. Int J Mol Sci , 2011 . 12 ( 3 ): 2036 - 2054 . DOI:10.3390/ijms12032036http://doi.org/10.3390/ijms12032036 .
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv Mater , 2014 . 26 ( 47 ): 7931 - 7958 . DOI:10.1002/adma.201402532http://doi.org/10.1002/adma.201402532 .
Wang J, Bai F Q, Xia B H, Zhang H X. J Phys Chem A , 2011 . 115 ( 42 ): 11689 - 11695 . DOI:10.1021/jp200878yhttp://doi.org/10.1021/jp200878y .
Yang X L, Xu X B, Zhou G J. J Mater Chem C , 2015 . 3 ( 5 ): 913 - 944 . DOI:10.1039/C4TC02474Ehttp://doi.org/10.1039/C4TC02474E .
Yang Bing(杨兵), Ma Yuguang(马於光). Sci China Chem(中国科学: 化学) , 2013 . 43 ( 11 ): 1457 - 1467.
Li W J, Pan Y Y, Xiao R, Peng Q M, Zhang S T, Ma D G, Li F, Shen F Z, Wang Y H, Yang B. Adv Funct Mater , 2014 . 24 ( 11 ): 1609 - 1614 . DOI:10.1002/adfm.201301750http://doi.org/10.1002/adfm.201301750 .
Parker C A. Proc R Soc London Ser A , 1963 . 276 ( 1364 ): 125 - 135 . DOI:10.1098/rspa.1963.0197http://doi.org/10.1098/rspa.1963.0197 .
Deaton J C, Switalski S C, Kondakov D Y, Young R H, Pawlik T D, Giesen D J, Harkins S B, Miller Alex J, Mickenberg S F, Peters J C. J Am Chem Soc , 2010 . 132 ( 27 ): 9499 - 9508 . DOI:10.1021/ja1004575http://doi.org/10.1021/ja1004575 .
Parker C A, Hatchard C G. Trans Faraday Soc , 1961 . 57 132 - 136.
Salazar F A, Fedorov A, Berberan-Santos M N. Chem Phys Lett , 1997 . 271 ( 4-6 ): 361 - 366 . DOI:10.1016/S0009-2614(97)00469-7http://doi.org/10.1016/S0009-2614(97)00469-7 .
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv Mater , 2009 . 21 ( 47 ): 4802 - 4806 . DOI:10.1002/adma.200900983http://doi.org/10.1002/adma.200900983 .
Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl Phys Lett , 2011 . 98 ( 8 ): 1 - 3.
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T. Adv Mater , 2016 . 28 ( 32 ): 6976 - 6983 . DOI:10.1002/adma.201601675http://doi.org/10.1002/adma.201601675 .
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen C R W, Lin H W, Liu R S, Cheng C H. Nat Photon , 2018 . 12 ( 4 ): 235 - 240 . DOI:10.1038/s41566-018-0112-9http://doi.org/10.1038/s41566-018-0112-9 .
Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv Mater , 2015 . 27 ( 44 ): 7236 - 7240 . DOI:10.1002/adma.201501090http://doi.org/10.1002/adma.201501090 .
Huang T Y, Jiang W, Duan L. J Mater Chem C , 2018 . 6 ( 21 ): 5577 - 5596 . DOI:10.1039/C8TC01139Ghttp://doi.org/10.1039/C8TC01139G .
Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R. Nat Rev Mater , 2018 . 3 ( 4 ): 18020 DOI:10.1038/natrevmats.2018.20http://doi.org/10.1038/natrevmats.2018.20 .
Rao J C, Liu X R, Li X F, Yang L Q, Zhao L, Wang S M, Ding J Q, Wang L X. Angew Chem Int Ed , 2019 . 58 2 - 9 . DOI:10.1002/anie.201813331http://doi.org/10.1002/anie.201813331 .
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature , 2012 . 492 ( 7428 ): 234 DOI:10.1038/nature11687http://doi.org/10.1038/nature11687 .
Wong M Y, Zysman-Colman E. Adv Mater , 2017 . 29 ( 22 ): 1605444 DOI:10.1002/adma.201605444http://doi.org/10.1002/adma.201605444 .
Kawasumi K, Wu T, Zhu T Y, Chae H S, Voorhis T V, Baldo M A, Swager T M. J Am Chem Soc , 2015 . 137 11908 - 11911 . DOI:10.1021/jacs.5b07932http://doi.org/10.1021/jacs.5b07932 .
Feuillastre S, Pauton M, Gao L H, Desmarchelier A, Riives A J, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J Am Chem Soc , 2016 . 138 ( 12 ): 3990 - 3993 . DOI:10.1021/jacs.6b00850http://doi.org/10.1021/jacs.6b00850 .
Furue R, Nishimoto T, Park I S, Lee J, Yasuda T. Angew Chem Int Ed , 2016 . 55 ( 25 ): 7171 - 7175 . DOI:10.1002/anie.201603232http://doi.org/10.1002/anie.201603232 .
Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C. Angew Chem Int Ed , 2012 . 51 ( 45 ): 11311 - 11315 . DOI:10.1002/anie.201206289http://doi.org/10.1002/anie.201206289 .
Lax M. J Chem Phys , 1952 . 20 ( 11 ): 1752 - 1760 . DOI:10.1063/1.1700283http://doi.org/10.1063/1.1700283 .
Yang Z Y, Mao Z, Xie Z L, Zhang Y, Liu S W, Zhao J, Xu J R, Chi Z G, Aldred M P. Chem Soc Rev , 2017 . 46 ( 3 ): 915 - 1016 . DOI:10.1039/C6CS00368Khttp://doi.org/10.1039/C6CS00368K .
Wang H, Xie L S, Peng Q, Meng L Q. Adv Mater , 2014 . 26 ( 30 ): 5198 - 5204 . DOI:10.1002/adma.201401393http://doi.org/10.1002/adma.201401393 .
Cho Y J, Yook K S, Lee J Y. Adv Mater , 2014 . 26 ( 38 ): 6642 - 6646 . DOI:10.1002/adma.201402188http://doi.org/10.1002/adma.201402188 .
Ban X X, Zhu A Y, Zhang T L, Tong Z W, Jiang W, Sun Y M. Chem Commun , 2017 . 53 ( 86 ): 11834 - 11837 . DOI:10.1039/C7CC06967Ghttp://doi.org/10.1039/C7CC06967G .
Matsuoka K, Albrecht K, Yamamoto K, Fujita K. Sci Rep , 2017 . 7 41780 DOI:10.1038/srep41780http://doi.org/10.1038/srep41780 .
Ban X X, Jiang W, Lu T T, Jing X F, Tang Q F, Huang S L, Sun K Y, Huang B, Lin B, Sun Y M. J Mater Chem C , 2016 . 4 8810 DOI:10.1039/C6TC03063Ghttp://doi.org/10.1039/C6TC03063G .
Wang X D, Wang S M, Lv J H, Shao S Y, Wang L X, Jing X B, Wang F S. Chem Sci , 2019 . 10 ( 10 ): 2915 - 2923 . DOI:10.1039/C8SC04991Bhttp://doi.org/10.1039/C8SC04991B .
Kim J, Park J, Jin S H, Lee T S. Polym Chem , 2015 . 6 ( 28 ): 5062 - 5069 . DOI:10.1039/C5PY00179Jhttp://doi.org/10.1039/C5PY00179J .
Xie Y J, Gong Y B, Han M M, Zhang F Y, Peng Q, Xie G H, Li Z. Macromolecules , 2019 . 52 ( 3 ): 896 - 903 . DOI:10.1021/acs.macromol.8b02051http://doi.org/10.1021/acs.macromol.8b02051 .
Sun K Y, Xie X F, Liu Y, Jiang W, Ban X X, Huang Bin, Sun Y M. J Mater Chem C , 2016 . 4 ( 38 ): 8973 - 8979 . DOI:10.1039/C6TC02634Fhttp://doi.org/10.1039/C6TC02634F .
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater , 2016 . 28 ( 21 ): 4019 - 4024 . DOI:10.1002/adma.201505026http://doi.org/10.1002/adma.201505026 .
Zhu Y H, Zhang Y W, Yao B, Wang Y J, Zhang Z L, Zhan H M, Zhang B H, Xie Z Y, Wang Y, Cheng Y X. Macromolecules , 2016 . 49 ( 11 ): 4373 - 4377 . DOI:10.1021/acs.macromol.6b00430http://doi.org/10.1021/acs.macromol.6b00430 .
Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S K, Monkman A P, Bryce M R, Dias F. Adv Opt Mater , 2016 . 4 ( 4 ): 597 - 607 . DOI:10.1002/adom.201500689http://doi.org/10.1002/adom.201500689 .
Xie G H, Luo J J, Huang M L, Chen T C, Wu K L, Gong S L, Yang C L. Adv Mater , 2017 . 29 ( 11 ): 1604223 DOI:10.1002/adma.201604223http://doi.org/10.1002/adma.201604223 .
Wang Y J, Zhu Y H, Xie G H, Zhan H M, Yang C L, Cheng Y X. J Mater Chem C , 2017 . 5 ( 41 ): 10715 - 10720 . DOI:10.1039/C7TC03769Dhttp://doi.org/10.1039/C7TC03769D .
Liu Y C, Wang Y K, Li C S, Ren Z J, Ma D G, Yan S K. Macromolecules , 2018 . 51 ( 12 ): 4615 - 4623 . DOI:10.1021/acs.macromol.8b00565http://doi.org/10.1021/acs.macromol.8b00565 .
Zhu Y H, Yang Y K, Wang Y J, Yao B, Lin X D, Zhang B H, Zhan H M, Xie Z Y, Cheng Y X. Adv Opt Mater , 2018 . 6 ( 10 ): 1701320 DOI:10.1002/adom.201701320http://doi.org/10.1002/adom.201701320 .
Yang Y K, Wang S M, Zhu Y H, Wang Y J, Zhan H M, Cheng Y X. Adv Funct Mater , 2018 . 28 ( 10 ): 1706916 DOI:10.1002/adfm.201706916http://doi.org/10.1002/adfm.201706916 .
Ren Z J, Nobuyasu R S, Dias F B, Monkman A P, Yan S K, Bryce M R. Macromolecules , 2016 . 49 ( 15 ): 5452 - 5460 . DOI:10.1021/acs.macromol.6b01216http://doi.org/10.1021/acs.macromol.6b01216 .
Shao S Y, Hu J, Wang X D, Wang L X, Jing X B, Wang F S. J Am Chem Soc , 2017 . 139 ( 49 ): 17739 - 17742 . DOI:10.1021/jacs.7b10257http://doi.org/10.1021/jacs.7b10257 .
Li C S, Nobuyasu R S, Wang Y K, Dias F B, Ren Z J, Bryce M R, Yan S K. Adv Opt Mater , 2017 . 5 ( 20 ): 1700435 DOI:10.1002/adom.201700435http://doi.org/10.1002/adom.201700435 .
Kim H J, Lee C, Godumala M, Godumala M, Choi S, Park S Y, Cho M J, Park S, Choi D H. Polym Chem , 2018 . 9 ( 11 ): 1318 - 1326 . DOI:10.1039/C7PY02113Ehttp://doi.org/10.1039/C7PY02113E .
Li C S, Xu Y W, Liu Y C, Ren Z J, Ma Y G, Yan S K. Nano Energy , 2019 . 65 104057 DOI:10.1016/j.nanoen.2019.104057http://doi.org/10.1016/j.nanoen.2019.104057 .
Hu J, Li Q, Wang X D, Shao S Y, Wang L X, Jing X B, Wang F S. Angew Chem Int Ed , 2019 . 58 8405 DOI:10.1002/anie.201902264http://doi.org/10.1002/anie.201902264 .
Park Y H, Jang H J, Lee J Y. Polym Chem , 2019 . 10 ( 35 ): 4872 - 4878 . DOI:10.1039/C9PY00701Fhttp://doi.org/10.1039/C9PY00701F .
Wei Q, Ge Z Y, Voit B. Macromol Rapid Commun , 2019 . 40 ( 1 ): 1800570 DOI:10.1002/marc.201800570http://doi.org/10.1002/marc.201800570 .
Liu X R, Rao J C, Li X F, Wang S M, Ding J Q, Wang L X. iScience , 2019 . 15 147 - 155 . DOI:10.1016/j.isci.2019.04.020http://doi.org/10.1016/j.isci.2019.04.020 .
Hu Y Y, Cai W Q, Ying L, Chen D J, Yang X Y, Jiang X F, Su S J, Huang F, Cao Y. J Mater Chem C , 2018 . 6 ( 11 ): 2690 - 2695 . DOI:10.1039/C7TC04064Dhttp://doi.org/10.1039/C7TC04064D .
Wang Y J, Zhu Y H, Xie G H, Xue Q, Tao C, Le Y J, Zhan H M, Cheng Y X. Org Electron , 2018 . 59 406 - 413 . DOI:10.1016/j.orgel.2018.05.058http://doi.org/10.1016/j.orgel.2018.05.058 .
Yang Y, Zhao L, Wang S M, Ding J Q, Wang L X. Macromolecules , 2018 . 51 ( 23 ): 9933 - 9942 . DOI:10.1021/acs.macromol.8b02050http://doi.org/10.1021/acs.macromol.8b02050 .
Wong M Y. J Electron Mater , 2017 . 46 ( 11 ): 6246 - 6281 . DOI:10.1007/s11664-017-5702-7http://doi.org/10.1007/s11664-017-5702-7 .
Nobuyasu R S, Ward J S, Gibson J, Laidlaw B A, Ren Z J, Data P, Batsanov A S, Penfold T J, Bryce M R, Dias F B. J Mater Chem C , 2019 . 7 6672 - 6684 . DOI:10.1039/C9TC00720Bhttp://doi.org/10.1039/C9TC00720B .
Liu Y C, Xie G H, Ren Z J, Yan S K. ACS Appl Polym Mater , 2019 . 1 ( 8 ): 2204 - 2212 . DOI:10.1021/acsapm.9b00461http://doi.org/10.1021/acsapm.9b00461 .
Li C S, Wang Y K, Sun D M, Li H H, Sun X L, Ma D G, Ren Z J, Yan S K. ACS Appl Mater Interfaces , 2018 . 10 ( 6 ): 5731 - 5739 . DOI:10.1021/acsami.8b00136http://doi.org/10.1021/acsami.8b00136 .
Li C S, Ren Z J, Sun X L, Li H H, Yan S K. Macromolecules , 2019 . 52 ( 6 ): 2296 - 2303 . DOI:10.1021/acs.macromol.9b00083http://doi.org/10.1021/acs.macromol.9b00083 .
Ren Z J, Yan S K. Prog Mater Sci , 2016 . 83 383 - 416 . DOI:10.1016/j.pmatsci.2016.07.004http://doi.org/10.1016/j.pmatsci.2016.07.004 .
Freeman D M E, Musser A J, Frost J M, Stern H L, Forster A K, Fallon K J, Rapidis A G, Cacialli F, McCulloch L, Clarke T M, Friend R H, Bronstein H. J Am Chem Soc , 2017 . 139 ( 32 ): 11073 - 11080 . DOI:10.1021/jacs.7b03327http://doi.org/10.1021/jacs.7b03327 .
0
浏览量
80
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构