浏览全部资源
扫码关注微信
有机无机复合材料国家重点实验室 软物质科学与工程高精尖创新中心生物医用材料北京实验室 北京化工大学 北京 100029
[ "成梦娇,女,1987年生. 北京化工大学材料科学与工程学院副教授、博士生导师. 2010年和2015年获得北京化工大学学士和博士学位. 获得CSC-DAAD中德联合博士后项目资助,于2015 ~ 2016年赴德国明斯特大学从事博士后研究. 入选北京化工大学青年英才百人计划. 主要研究方向为精准宏观超分子组装,致力于组装界面调控和组装途径设计,实现宏观超分子有序结构的制备,发展其在组织工程支架领域的应用" ]
[ "石峰,男,1978年生. 北京化工大学材料科学与工程学院教授、博士生导师. 2004年获得吉林大学学士和硕士学位,2007年获得清华大学博士学位,研究生期间曾赴色列耶路撒冷希伯莱大学、德国明斯特大学展开合作研究. 2007 ~ 2008年在德国马普高分子所进行博士后研究工作. 入选教育部首届青年长江学者,“万人计划”科技领军人才,获得国家自然科学基金委杰出青年基金、优秀青年基金、北京市杰出青年基金、教育部霍英东基金、教育部新世纪人才和北京市新星计划等. 主要研究方向为宏观超分子组装,致力于阐释材料领域的界面-界面相互作用,发展制备体相超分子材料的新途径" ]
纸质出版日期:2020-6,
网络出版日期:2020-5-12,
收稿日期:2020-1-22,
修回日期:2020-2-23,
扫 描 看 全 文
成梦娇, 石峰. 精准宏观超分子组装[J]. 高分子学报, 2020,51(6):598-608.
Meng-jiao Cheng, Feng Shi. Precise Macroscopic Supramolecular Assembly[J]. Acta Polymerica Sinica, 2020,51(6):598-608.
成梦娇, 石峰. 精准宏观超分子组装[J]. 高分子学报, 2020,51(6):598-608. DOI: 10.11777/j.issn1000-3304.2020.20016.
Meng-jiao Cheng, Feng Shi. Precise Macroscopic Supramolecular Assembly[J]. Acta Polymerica Sinica, 2020,51(6):598-608. DOI: 10.11777/j.issn1000-3304.2020.20016.
宏观超分子组装是近年来超分子科学的新兴研究方向,其本质是表面修饰有大量超分子官能团的宏观构筑基元的界面组装. 由于组装过程中存在较多热力学亚稳态,导致最终产生大量非精准组装体,整体结构有序度低,制约了其在高性能超分子材料方面的应用,因此,如何实现精准宏观超分子组装,构建有序超分子结构,成为了制约宏观超分子组装发展的瓶颈问题之一. 本专论从宏观超分子组装的概念与组装机制出发,根据宏观超分子组装过程的特点,分析阐述了组装体中存在不同界面匹配度的热力学亚稳态的问题;继而,从能量面的角度展开分析,总结和归纳了提高组装结构有序度的精准组装策略,包括:(1)利用组装体热力学稳定性差异,设计各向异性构筑基元诱导目标组装结构的形成,发展自纠错策略提高组装界面匹配度;(2)引入宏观构筑基元的组装动力学设计,使构筑基元发生自驱动运动并通过界面长程力取向,使组装界面达到高度匹配,实现近热力学平衡态的精准组装,直接获得精准结构. 进而,结合精准宏观超分子组装制备的有序结构,我们展望了其在构建组织工程支架方面的应用前景.
Macroscopic supramolecular assembly (MSA)
which is mainly focused on the interfacial assembly of building blocks with a size exceeding ten micro-meter
has been a recent progress of supramolecular science. A typical MSA process resembles many interfacial phenomena such as underwater adhesion
self-healing
bio-adhesion
etc
.; MSA is flexible in the design
fabrication and assembly of building blocks and thus is promising to prepare 3D ordered structures of various purposes such as tissue scaffolds
flexible devices and so on. To facilitate the application of MSA
much efforts have been dedicated to understanding the assembly mechanism. The intrinsic feature of MSA is an interfacial assembly event between two macroscopic building blocks modified with massive supramolecular interactive motifs. Because of increased groups and interactive area
MSA assembly normally results in a few thermodynamic metastable structures
leading to many imprecise assemblies and less ordered final structures
which is not favourable for high performance of bulk supramolecular materials and corresponding applications. Therefore
developing strategies to achieve precise MSA for the construction of ordered supramolecular structures
has remained as a challenge of further development of MSA. In this feature article
we have briefly introduced the concept of MSA by comparing the similarity and difference with supramolecular assembly of molecular level or nano-scale
which thus relies on further insight into assembly mechanism of MSA. With further analysis of the energy landscape of MSA
we have elaborated the low-precision problem of MSA towards the formation of ordered structure
which is a new issue different from molecular assembly. More than the situation of similar components leading to different assembly geometry
MSA has an extra low-precision phenomenon of meta-stable assemblies
i.e.
the matching degree of even the same assembly geometry could be diverse
due to the increasing interactive area and surface groups in an MSA event. Until now
several strategies have been reported to increase the precision of MSA structures. We have summarized two general idea from the point of thermodynamic and kinetic features of MSA. (1) The thermodynamic stability of precise and imprecise assemblies differs dramatically
which provides design room for selective assembly of precise structures. For example
fabricating anisotropic building blocks could increase the selectivity of targeted assembly geometry; applying a self-correction methodology based on a dynamic assembly/disassembly principle could efficiently convert meta-stable assemblies into stable ones. (2) Assembly kinetics and pathways could be well controlled through engineering of building blocks. Self-propulsion methods could make macroscopic building blocks to locomote similar to molecules
thus providing collision and interactive chances. Long-ranged forces (
e.g.
curvature forces at immiscible phases) could pre-align the matching degree of macroscopic surfaces before assembly. Efficient interfacial assembly upon contact could stabilize precise assemblies by applying a ‘flexible spacing coating’ beneath the supramolecular groups. Finally
we envisioned potential applications of precise MSA structures in fabricating complex tissue scaffolds
which requires integration of multiple materials
diverse chemical/biological factors
etc
.
精准宏观超分子组装动态组装/解组装自纠错各向异性构筑基元界面自由能最小化原理
Precise macroscopic supramolecular assemblyDynamic assembly/disassemblySelf-correctionAnisotropic building blocksPrinciple of minimization of interfacial free energy
Harkness V R W, Avakyan N, Sleiman H F, Mittermaier A K. Nat Commun , 2018 . 9 ( 1 ): 3152 DOI:10.1038/s41467-018-05502-zhttp://doi.org/10.1038/s41467-018-05502-z .
Lu F, Yager K G, Zhang Y, Xin H, Gang O. Nat Commun , 2015 . 6 ( 1 ): 6912 DOI:10.1038/ncomms7912http://doi.org/10.1038/ncomms7912 .
Schulte B, Tsotsalas M, Becker M, Studer A, de Cola L. Angew Chem Int Ed , 2010 . 49 ( 38 ): 6881 - 6884 . DOI:10.1002/anie.201002851http://doi.org/10.1002/anie.201002851 .
Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Nat Chem , 2011 . 3 ( 11 ): 34 - 37.
Cheng M, Gao H, Zhang Y, Tremel W, Chen J F, Shi F, Knoll W. Langmuir , 2011 . 27 ( 11 ): 6559 - 6564 . DOI:10.1021/la201399whttp://doi.org/10.1021/la201399w .
Yamaguchi H, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Macromolecules , 2011 . 44 ( 8 ): 2395 - 2399 . DOI:10.1021/ma200398yhttp://doi.org/10.1021/ma200398y .
Cheng M, Shi F, Li J, Lin Z, Jiang C, Xiao M, Zhang L, Yang W, Nishi T. Adv Mater , 2014 . 26 ( 19 ): 3009 - 3013 . DOI:10.1002/adma.201305177http://doi.org/10.1002/adma.201305177 .
Cheng M J, Zhang Q, Shi F. Chinese J Polym Sci , 2018 . 36 ( 3 ): 306 - 321 . DOI:10.1007/s10118-018-2069-zhttp://doi.org/10.1007/s10118-018-2069-z .
Cheng Mengjiao(成梦娇), Zhang Qian(张倩), Shi Feng(石峰). Scientia Sinica Chimica(中国科学: 化学) , 2017 . 47 ( 7 ): 816 - 829 . DOI:10.1360/N032016-00195http://doi.org/10.1360/N032016-00195 .
Ju G, Cheng M, Zhang Q, Guo F, Xie P, Shi F. ACS Appl Nano Mater , 2018 . 1 ( 10 ): 5662 - 5672 . DOI:10.1021/acsanm.8b01277http://doi.org/10.1021/acsanm.8b01277 .
Ju G, Cheng M, Guo F, Zhang Q, Shi F. Angew Chem Int Ed , 2018 . 57 ( 29 ): 8963 - 8967 . DOI:10.1002/anie.201803632http://doi.org/10.1002/anie.201803632 .
Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T. Adv Mater , 2014 . 26 ( 32 ): 5665 - 5669 . DOI:10.1002/adma.201402026http://doi.org/10.1002/adma.201402026 .
Ji X, Wu R T, Long L, Ke X S, Guo C, Ghang Y J, Lynch V M, Huang F, Sessler J L. Adv Mater , 2018 . 30 ( 11 ): 1705480 DOI:10.1002/adma.201705480http://doi.org/10.1002/adma.201705480 .
Li J, Xu Z, Xiao Y, Gao G, Chen J, Yin J, Fu J. J Mater Chem B , 2018 . 6 ( 2 ): 257 - 264 . DOI:10.1039/C7TB02904Ghttp://doi.org/10.1039/C7TB02904G .
Li Q, Zhang Y W, Wang C F, Weitz D A, Chen S. Adv Mater , 2018 . 30 ( 52 ): 1803475 DOI:10.1002/adma.201803475http://doi.org/10.1002/adma.201803475 .
Wu Baoyi(吴宝意), Xu Yawen(徐亚文), Le Xiaoxia(乐晓霞), Jian Yukun(简钰坤), Lu Wei(路伟), Zhang Jiawei(张佳玮), Chen Tao(陈涛). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 496 - 504 . DOI:10.11777/j.issn1000-3304.2019.18281http://doi.org/10.11777/j.issn1000-3304.2019.18281 .
Tantakitti F, Boekhoven J, Wang X, Kazantsev R V, Yu T, Li J, Zhuang E, Zandi R, Ortony J H, Newcomb C J, Palmer L C, Shekhawat G S, de la Cruz M O, Schatz G C, Stupp S I. Nat Mater , 2016 . 15 ( 1 ): 469 - 476.
Lu Haixu(陆海旭), Tang Liming(唐黎明). Acta Polymerica Sinica(高分子学报) , 2013 . ( 10 ): 1241 - 1246 . DOI:10.3724/SP.J.1105.2013.13183http://doi.org/10.3724/SP.J.1105.2013.13183 .
Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat Commun , 2012 . 3 ( 1 ): 603 DOI:10.1038/ncomms1617http://doi.org/10.1038/ncomms1617 .
Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nat Commun , 2012 . 3 ( 1 ): 831 DOI:10.1038/ncomms1841http://doi.org/10.1038/ncomms1841 .
Akram R, Cheng M, Guo F, Iqbal S, Shi F. Langmuir , 2016 . 32 ( 15 ): 3617 - 3622 . DOI:10.1021/acs.langmuir.6b00115http://doi.org/10.1021/acs.langmuir.6b00115 .
Xiao M, Xian Y, Shi F. Angew Chem Int Ed , 2015 . 54 ( 31 ): 8952 - 8956 . DOI:10.1002/anie.201502349http://doi.org/10.1002/anie.201502349 .
Ju G, Zhang Q, Guo F, Xie P, Cheng M, Shi F. J Mater Chem B , 2019 . 7 ( 10 ):1684 - 1689 . DOI:10.1039/C8TB02588Fhttp://doi.org/10.1039/C8TB02588F .
Zhang Q, Liu C, Ju G, Cheng M, Shi F. Macromol Rapid Commun , 2018 . 39 ( 20 ): 1800180 DOI:10.1002/marc.201800180http://doi.org/10.1002/marc.201800180 .
Liu Chongxian(刘崇现), Zhang Qian(张倩), Zhang Yajun(张亚军), Cheng Mengjiao(成梦娇), Shi Feng(石峰). Chinese Science Bulletin(科学通报) , 2018 . 63 ( 34 ): 3650 - 3657 . DOI:10.1360/N972018-00858http://doi.org/10.1360/N972018-00858 .
Qi H, Ghodousi M, Du Y, Grun C, Bae H, Yin P, Khademhosseini A. Nat Commun , 2013 . 4 ( 2275 ): 1 - 10.
Ji X, Chen W, Long L, Huang F, Sessler J L. Chem Sci , 2018 . 9 ( 40 ): 7746 - 7752 . DOI:10.1039/C8SC03463Jhttp://doi.org/10.1039/C8SC03463J .
Ji X, Li Z, Liu X, Peng H-Q, Song F, Qi J, Lam J W Y, Long L, Sessler J L, Tang B Z. Adv Mater , 2019 . 31 ( 40 ): 1902365 DOI:10.1002/adma.201902365http://doi.org/10.1002/adma.201902365 .
Ji X, Shi B, Wang H, Xia D, Jie K, Wu Z L, Huang F. Adv Mater , 2015 . 27 ( 48 ): 8062 - 8066 . DOI:10.1002/adma.201504355http://doi.org/10.1002/adma.201504355 .
Ju G, Guo F, Zhang Q, Kuehne A J C, Cui S, Cheng M, Shi F. Adv Mater , 2017 . 29 ( 37 ): 1702444 DOI:10.1002/adma.201702444http://doi.org/10.1002/adma.201702444 .
Israelachvili J N. 11 - Contrasts between intermolecular, interparticle, and intersurface forces. In: Israelachvili J N, ed. Intermolecular and Surface Forces (3th ed). Boston: Elsevier Academic Press, 2011. 205 − 222
Cheng M, Ju G, Zhang Y, Song M, Zhang Y, Shi F. Small , 2014 . 10 ( 19 ): 3907 - 3911 . DOI:10.1002/smll.201400922http://doi.org/10.1002/smll.201400922 .
Vinay T V, Banuprasad T N, George S D, Varghese S, Varanakkottu S N. Adv Mater Interfaces , 2017 . 4 ( 7 ): 1601231 DOI:10.1002/admi.201601231http://doi.org/10.1002/admi.201601231 .
Bowden N B, Weck M, Choi I S, Whitesides G M. Acc Chem Res , 2001 . 34 ( 3 ): 231 - 238 . DOI:10.1021/ar0000760http://doi.org/10.1021/ar0000760 .
Gracias D H, Tien J, Breen T L, Hsu C, Whitesides G M. Science , 2000 . 289 ( 5482 ): 1170 - 1172 . DOI:10.1126/science.289.5482.1170http://doi.org/10.1126/science.289.5482.1170 .
Ismagilov R F, Schwartz A, Bowden N, Whitesides G M. Angew Chem Int Ed , 2002 . 41 ( 4 ): 652 - 654 . DOI:10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-Uhttp://doi.org/10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U .
Xiao M, Cheng M, Zhang Y, Shi F. Small , 2013 . 9 ( 15 ): 2509 - 2514 . DOI:10.1002/smll.201203105http://doi.org/10.1002/smll.201203105 .
Xiao M, Jiang C, Shi F. NPG Asia Mater , 2014 . 6 e128 DOI:10.1038/am.2014.76http://doi.org/10.1038/am.2014.76 .
Cheng M, Zhang D, Zhang S, Wang Z, Shi F. CCS Chem , 2019 . 1 ( 2 ): 148 - 155 . DOI:10.31635/ccschem.019.20180009http://doi.org/10.31635/ccschem.019.20180009 .
Cheng M, Zhu G, Li L, Zhang S, Zhang D, Kuehne A J C, Shi F. Angew Chem Int Ed , 2018 . 57 ( 43 ): 14106 - 14110 . DOI:10.1002/anie.201808294http://doi.org/10.1002/anie.201808294 .
Tjandra K C, Thordarson P. Bioconjugate Chem , 2019 . 30 ( 3 ): 503 - 514 . DOI:10.1021/acs.bioconjchem.8b00804http://doi.org/10.1021/acs.bioconjchem.8b00804 .
Curk T, Dobnikar J, Frenkel D. Design principles for super selectivity using multivalent interactions. In: Huskens J, Prins L J, Haag R, Ravoo B J, eds. Multivalency: Concepts, Research & Applications. Hoboken: John Wiley & Sons Ltd., 2017. 75 − 101
Pandey S, Ewing M, Kunas A, Nguyen N, Gracias D H, Menon G. Proc Natl Acad Sci U S A , 2011 . 108 ( 50 ): 19885 - 19890 . DOI:10.1073/pnas.1110857108http://doi.org/10.1073/pnas.1110857108 .
Cheung K C, Demaine E D, Bachrach J R, Griffith S. IEEE T Robot , 2011 . 27 ( 4 ): 718 - 729 . DOI:10.1109/TRO.2011.2132951http://doi.org/10.1109/TRO.2011.2132951 .
Cheng M, Liu Q, Xian Y, Shi F. ACS Appl Mater Interfaces , 2014 . 6 ( 10 ): 7572 - 7578 . DOI:10.1021/am500910yhttp://doi.org/10.1021/am500910y .
Zhang Y, Cheng M, Wang Y, Shi F. Langmuir , 2018 . 34 ( 3 ): 1100 - 1108 . DOI:10.1021/acs.langmuir.7b02608http://doi.org/10.1021/acs.langmuir.7b02608 .
Cheng M, Zhang Y, Wang S, Shi F. Nanoscale , 2017 . 9 ( 44 ): 17220 - 17223 . DOI:10.1039/C7NR07059Dhttp://doi.org/10.1039/C7NR07059D .
Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Biotechnol Bioeng , 2011 . 108 ( 7 ): 1693 - 1703 . DOI:10.1002/bit.23102http://doi.org/10.1002/bit.23102 .
Han Y, Yang Y, Li S, Wu J, Chen Y, Lu T, Xu F. Biofabrication , 2013 . 5 ( 3 ): 035004 DOI:10.1088/1758-5082/5/3/035004http://doi.org/10.1088/1758-5082/5/3/035004 .
Cheng M, Wang Y, Yu L, Su H, Han W, Lin Z, Li J, Hao H, Tong C, Li X, Shi F. Adv Funct Mater , 2015 . 25 ( 44 ): 6851 - 6857 . DOI:10.1002/adfm.201503366http://doi.org/10.1002/adfm.201503366 .
0
浏览量
75
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构