浏览全部资源
扫码关注微信
中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
[ "石毅,男,1983年生. 于2006年和2009年毕业于湘潭大学,获学士和硕士学位,导师为蔡远利教授,于2013年毕业于中国科学院化学研究所,获博士学位,导师为陈永明研究员. 2013 ~ 2018年分别在美国圣母大学和休斯敦大学从事博士后研究,合作导师分别为高海峰教授和姚彦教授. 2019年入选中山大学“百人计划”,任副教授,在材料科学与工程学院工作,主要开展拓扑高分子精密合成及应用等方面的研究" ]
[ "陈永明,男,1964年生. 教授/博导,中国科学院“百人计划”,国家杰出青年科学基金获得者. 1993年毕业于南开大学,获博士学位. 2001 ~ 2013年任职于中国科学院化学研究所,研究员/博导. 2013至今,中山大学“百人计划”引进人才,教授/博导. 曾担任中国科学院化学研究所高分子物理与化学国家重点实验室副主任、中山大学聚合物复合材料及功能材料教育部重点实验室主任、《Polymer》杂志副主编、《Macromolecules》/《ACS Macro Lett》杂志顾问委员等. 目前担任中国化学会高分子学科委员会委员、《Chinese Journal of Polymer Science》、《高分子学报》和《离子交换及反应性高分子》等杂志编委. 已发表SCI论文200余篇,获得国家自然科学奖二等奖,高分子基础研究王葆仁奖等多项奖励. 主要研究方向为高分子合成化学、新型功能高分子材料及生物医用材料等. " ]
纸质出版日期:2020-6,
网络出版日期:2020-4-29,
收稿日期:2020-2-7,
修回日期:2020-3-4,
扫 描 看 全 文
孙子扬, 李华安, 黄华华, 石毅, 陈永明. 聚合物分子刷在纳米载体领域的应用[J]. 高分子学报, 2020,51(6):609-619.
Zi-yang Sun, Hua-an Li, Hua-hua Huang, Yi Shi, Yong-ming Chen. The Applications of Molecular Bottlebrush in Nanomedicine[J]. Acta Polymerica Sinica, 2020,51(6):609-619.
孙子扬, 李华安, 黄华华, 石毅, 陈永明. 聚合物分子刷在纳米载体领域的应用[J]. 高分子学报, 2020,51(6):609-619. DOI: 10.11777/j.issn1000-3304.2020.20021.
Zi-yang Sun, Hua-an Li, Hua-hua Huang, Yi Shi, Yong-ming Chen. The Applications of Molecular Bottlebrush in Nanomedicine[J]. Acta Polymerica Sinica, 2020,51(6):609-619. DOI: 10.11777/j.issn1000-3304.2020.20021.
聚合物分子刷是一种通过共价键连接的单分子纳米材料,与通过超分子自组装获得的纳米组装体相比,其在复杂的生理环境中具有更好的循环稳定性. 另外,可以通过调控聚合物分子刷主链与侧链的相对长度,即调控长径比,获得类似于球状、棒状、蠕虫状的纳米颗粒,为研究具有相同化学组成不同形貌的纳米颗粒的生理行为提供了研究平台. 因此,本文总结了近十年来聚合物分子刷在小分子药物输送、基因负载、生物成像等纳米医学领域的相关研究进展,并展望了聚合物分子刷在纳米医学领域的发展前景.
Molecular bottlebrushes (MBB)
as a special kind of grafted polymers
have densely grafted with side chains along a linear polymer backbone that often show a wormlike single chain morphology
representing a promising one-dimensional unimolecular nanomaterial. MBB attracts much attention from material scientists on account of its unique structure as well as unique properties. Benefited from the development of controlled living polymerization and click chemistry over the years
it allows excellent control over their synthesis and structural compositions
showing the great diversity of its structure and functionality. As compared with nanomaterials based on self-assembly
brush polymers have lots of advantages
including favorable stability
tunable sizes and morphologies
facile synthesis
and flexible compositions
that make them promising nanocarriers and capable of loading more and multiple “cargos” within one molecule. In addition
by adjusting the relative length of the backbone and side chain of molecular bottlebrush
that is
adjusting the ratio of length to diameter
nanomaterials with the shape of sphere
rod and worm can be obtained
providing a research platform for studying the physiological behavior of nanomaterials with the same chemical composition but different morphologies. Herein
this review aims to summarize the recent research progress in the application of molecular bottlebrush in the field of nanomedicine
such as small molecule drug delivery
gene loading and biological imaging
and the future development and challenges of molecular bottlebrush in nanomedicine field have also been discussed.
聚合物分子刷单分子纳米颗粒纳米医学纳米载药系统生物成像
Molecular bottlebrushUnimolecular nanoparticleNanomedicineDrug delivery systemBiological imaging
Zhang M, Müller A H E. J Polym Sci, Part A: Polym Chem , 2005 . 43 3461 - 3481 . DOI:10.1002/pola.20900http://doi.org/10.1002/pola.20900 .
Sheiko S S, Sumerlin B S, Matyjaszewski K. Prog Polym Sci , 2008 . 33 759 - 785 . DOI:10.1016/j.progpolymsci.2008.05.001http://doi.org/10.1016/j.progpolymsci.2008.05.001 .
Chen Y. Macromolecules , 2012 . 45 2619 - 2631 . DOI:10.1021/ma201495mhttp://doi.org/10.1021/ma201495m .
Verduzco R, Li X, Pesek S L, Stein G E. Chem Soc Rev , 2015 . 44 2405 - 2420 . DOI:10.1039/C4CS00329Bhttp://doi.org/10.1039/C4CS00329B .
Müllner M, Müller A H E. Polymer , 2016 . 98 389 - 401 . DOI:10.1016/j.polymer.2016.03.076http://doi.org/10.1016/j.polymer.2016.03.076 .
Müllner M. Macromol Chem Phys , 2016 . 217 2209 - 2222 . DOI:10.1002/macp.201600086http://doi.org/10.1002/macp.201600086 .
Abbasi M, Faust L, Wilhelm M. Adv Mater , 2019 . 31 e1806484 .
Lee H-i, Pietrasik J, Sheiko S S, Matyjaszewski K. Prog Polym Sci , 2010 . 35 24 - 44 . DOI:10.1016/j.progpolymsci.2009.11.002http://doi.org/10.1016/j.progpolymsci.2009.11.002 .
Peng S, Bhushan B. RSC Adv , 2012 . 2 8557 - 8578 . DOI:10.1039/c2ra20451ghttp://doi.org/10.1039/c2ra20451g .
Hadasha W, Klumperman B. Polym Int , 2014 . 63 824 - 834 . DOI:10.1002/pi.4697http://doi.org/10.1002/pi.4697 .
Ilgach D M, Meleshko T K, Yakimansky A V. Polym Sci Ser C , 2015 . 57 3 - 19 . DOI:10.1134/S181123821501004Xhttp://doi.org/10.1134/S181123821501004X .
Xie G, Martinez M R, Olszewski M, Sheiko S S, Matyjaszewski K. Biomacromolecules , 2019 . 20 27 - 54 . DOI:10.1021/acs.biomac.8b01171http://doi.org/10.1021/acs.biomac.8b01171 .
Feng C, Huang X. Acc Chem Res , 2018 . 51 2314 - 2323 . DOI:10.1021/acs.accounts.8b00307http://doi.org/10.1021/acs.accounts.8b00307 .
Miyake G M, Weitekamp R A, Piunova V A, Grubbs R H. J Am Chem Soc , 2012 . 134 14249 - 14254 . DOI:10.1021/ja306430khttp://doi.org/10.1021/ja306430k .
Sun G, Cho S, Clark C, Verkhoturov S V, Eller M J, Li A, Pavía-Jiménez A, Schweikert E A, Thackeray J W, Trefonas P, Wooley K L. J Am Chem Soc , 2013 . 135 4203 - 4206 . DOI:10.1021/ja3126382http://doi.org/10.1021/ja3126382 .
Banquy X, Burdyńska J, Lee D W, Matyjaszewski K, Israelachvili J. J Am Chem Soc , 2014 . 136 6199 - 6202 . DOI:10.1021/ja501770yhttp://doi.org/10.1021/ja501770y .
Yu M, Zheng J. ACS Nano , 2015 . 9 6655 - 6674 . DOI:10.1021/acsnano.5b01320http://doi.org/10.1021/acsnano.5b01320 .
Sato A, Choi S W, Hirai M, Yamayoshi A, Moriyarna R, Yamano T, Takagi M, Kano A, Shimamoto A, Maruyama A. J Control Release , 2007 . 122 209 - 216 . DOI:10.1016/j.jconrel.2007.04.018http://doi.org/10.1016/j.jconrel.2007.04.018 .
Wang D, Lin J, Jia F, Tan X, Wang Y, Sun X, Cao X, Che F, Lu H, Gao X, Shimkonis J C, Nyoni Z, Lu X, Zhang K. Sci Adv , 2019 . 5 eaav9322 DOI:10.1126/sciadv.aav9322http://doi.org/10.1126/sciadv.aav9322 .
Chu Y, Li H, Huang H, Zhou H, Chen Y, Andreas B, Liu L, Chen Y. J Polym Sci, Part A: Polym Chem , 2018 . 56 174 - 183 . DOI:10.1002/pola.28889http://doi.org/10.1002/pola.28889 .
Venkataraman S, Hedrick J L, Ong Z Y, Yang C, Ee P L R, Hammond P T, Yang Y Y. Adv Drug Deliv Rev , 2011 . 63 1228 - 1246 . DOI:10.1016/j.addr.2011.06.016http://doi.org/10.1016/j.addr.2011.06.016 .
Jindal A B. Int J Pharm , 2017 . 532 450 - 465 . DOI:10.1016/j.ijpharm.2017.09.028http://doi.org/10.1016/j.ijpharm.2017.09.028 .
Li H, Liu H, Nie T, Chen Y, Wang Z, Huang H, Liu L, Chen Y. Biomaterials , 2018 . 178 620 - 629 . DOI:10.1016/j.biomaterials.2018.03.032http://doi.org/10.1016/j.biomaterials.2018.03.032 .
Müllner M, Dodds S J, Nguyen T-H, Senyschyn D, Porter C J H, Boyd B J, Caruso F. ACS Nano , 2015 . 9 1294 - 1304 . DOI:10.1021/nn505125fhttp://doi.org/10.1021/nn505125f .
Pelras T, Duong H T T, Kim B J, Hawkett B S, Müllner M. Polymer , 2017 . 112 244 - 251 . DOI:10.1016/j.polymer.2017.02.001http://doi.org/10.1016/j.polymer.2017.02.001 .
Müllner M, Yang K, Kaur A, New E J. Polym Chem , 2018 . 9 3461 - 3465 . DOI:10.1039/C8PY00703Ahttp://doi.org/10.1039/C8PY00703A .
Müllner M, Mehta D, Nowell C J, Porter C J H. Chem Commun , 2016 . 52 9121 - 9124 . DOI:10.1039/C6CC00447Dhttp://doi.org/10.1039/C6CC00447D .
Zhang Y, Zhang Z, Liu C, Chen W, Li C, Wu W, Jiang X. Polym Chem , 2017 . 8 1672 - 1679 . DOI:10.1039/C6PY01941Bhttp://doi.org/10.1039/C6PY01941B .
Hörtz C, Birke A, Kaps L, Decker S, Wächtersbach E, Fischer K, Schuppan D, Barz M, Schmidt M. Macromolecules , 2015 . 48 2074 - 2086 . DOI:10.1021/ma502497xhttp://doi.org/10.1021/ma502497x .
Pan X, Ishaq M W, Umair A, Ali M W, Li L. ACS Macro Lett , 2019 . 8 1535 - 1540 . DOI:10.1021/acsmacrolett.9b00711http://doi.org/10.1021/acsmacrolett.9b00711 .
Gan W, Shi Y, Jing B, Cao X, Zhu Y, Gao H. Macromolecules , 2017 . 50 215 - 222 . DOI:10.1021/acs.macromol.6b02388http://doi.org/10.1021/acs.macromol.6b02388 .
Golder M R, Nguyen H V T, Oldenhuis N J, Grundler J, Park E J, Johnson J A. Macromolecules , 2018 . 51 9861 - 9870 . DOI:10.1021/acs.macromol.8b01966http://doi.org/10.1021/acs.macromol.8b01966 .
Garle A L, Budhlall B M. Langmuir , 2019 . 35 3372 - 3382 . DOI:10.1021/acs.langmuir.8b00756http://doi.org/10.1021/acs.langmuir.8b00756 .
Guo J, Hong H, Chen G, Shi S, Nayak T R, Theuer C P, Barnhart T E, Cai W, Gong S. ACS Appl Mater Interfaces , 2014 . 6 21769 - 21779 . DOI:10.1021/am5002585http://doi.org/10.1021/am5002585 .
Bühler J, Gietzen S, Reuter A, Kappel C, Fischer K, Decker S, Schäffel D, Koynov K, Bros M, Tubbe I, Grabbe S, Schmidt M. Chem Eur J , 2014 . 20 12405 - 12410 . DOI:10.1002/chem.201403942http://doi.org/10.1002/chem.201403942 .
Ganta S, Devalapally H, Shahiwala A, Amiji M. J Control Release , 2008 . 126 187 - 204 . DOI:10.1016/j.jconrel.2007.12.017http://doi.org/10.1016/j.jconrel.2007.12.017 .
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J Control Release , 2015 . 200 138 - 157 . DOI:10.1016/j.jconrel.2014.12.030http://doi.org/10.1016/j.jconrel.2014.12.030 .
Zhao P, Liu L, Feng X, Wang C, Shuai X, Chen Y. Macromol Rapid Commun , 2012 . 33 1351 - 1355 . DOI:10.1002/marc.201200172http://doi.org/10.1002/marc.201200172 .
Chen Y, Zhou H, Sun Z, Li H, Huang H, Liu L, Chen Y. Polymer , 2018 . 149 316 - 324 . DOI:10.1016/j.polymer.2018.06.078http://doi.org/10.1016/j.polymer.2018.06.078 .
Yu Y, Zou J, Yu L, Ji W, Li Y, Law W C, Cheng C. Macromolecules , 2011 . 44 4793 - 4800 . DOI:10.1021/ma2005102http://doi.org/10.1021/ma2005102 .
Yu Y, Chen C K, Law W C, Mok J, Zou J, Prasad P N, Cheng C. Mol Pharm , 2013 . 10 867 - 874 . DOI:10.1021/mp3004868http://doi.org/10.1021/mp3004868 .
Yu Y, Chen C K, Law W C, Sun H, Prasad P N, Cheng C. Polym Chem , 2015 . 6 953 - 961 . DOI:10.1039/C4PY01194Ehttp://doi.org/10.1039/C4PY01194E .
Johnson J A, Lu Y Y, Burts A O, Lim Y H, Finn M G, Koberstein J T, Turro N J, Tirrell D A, Grubbs R H. J Am Chem Soc , 2011 . 133 559 - 566 . DOI:10.1021/ja108441dhttp://doi.org/10.1021/ja108441d .
Gao A X, Liao L, Johnson J A. ACS Macro Lett , 2014 . 3 854 - 857 . DOI:10.1021/mz5004097http://doi.org/10.1021/mz5004097 .
Liao L, Liu J, Dreaden E C, Morton S W, Shopsowitz K E, Hammond P T, Johnson J A. J Am Chem Soc , 2014 . 136 5896 - 5899 . DOI:10.1021/ja502011ghttp://doi.org/10.1021/ja502011g .
Johnson J A, Lu Y Y, Burts A O, Xia Y, Durrell A C, Tirrell D A, Grubbs R H. Macromolecules , 2010 . 43 10326 - 10335 . DOI:10.1021/ma1021506http://doi.org/10.1021/ma1021506 .
Burts A O, Liao L, Lu Y Y, Tirrell D A, Johnson J A. Photochem Photobiol , 2014 . 90 380 - 385 . DOI:10.1111/php.12182http://doi.org/10.1111/php.12182 .
Zou J, Jafr G, Themistou E, Yap Y, Wintrob Z A P, Alexandridis P, Ceacareanu A C, Cheng C. Chem Commun , 2011 . 47 4493 - 4495 . DOI:10.1039/c0cc05531jhttp://doi.org/10.1039/c0cc05531j .
Eom T, Yoo W, Kim S, Khan A. Biomaterials , 2018 . 185 333 - 347 . DOI:10.1016/j.biomaterials.2018.09.020http://doi.org/10.1016/j.biomaterials.2018.09.020 .
Baumgartner R, Kuai D, Cheng J. Biomater Sci , 2017 . 5 1836 - 1844 . DOI:10.1039/C7BM00339Khttp://doi.org/10.1039/C7BM00339K .
Lu X, Tran T H, Jia F, Tan X, Davis S, Krishnan S, Amiji M M, Zhang K. J Am Chem Soc , 2015 . 137 12466 - 12469 . DOI:10.1021/jacs.5b08069http://doi.org/10.1021/jacs.5b08069 .
Cao X, Lu X, Wang D, Jia F, Tan X, Corley M, Chen X, Zhang K. Small , 2017 . 13 1701432 DOI:10.1002/smll.201701432http://doi.org/10.1002/smll.201701432 .
Lu X, Watts E, Jia F, Tan X, Zhang K. J Am Chem Soc , 2014 . 136 10214 - 10217 . DOI:10.1021/ja504790rhttp://doi.org/10.1021/ja504790r .
Kedracki D, Chekini M, Maroni P, Schlaad H, Nardin C. Biomacromolecules , 2014 . 15 3375 - 3382 . DOI:10.1021/bm5008713http://doi.org/10.1021/bm5008713 .
Fouz M F, Dey S K, Mukumoto K, Matyjaszewski K, Armitage B A, Das S R. Langmuir , 2018 . 34 14731 - 14737 . DOI:10.1021/acs.langmuir.8b02038http://doi.org/10.1021/acs.langmuir.8b02038 .
Cheon J, Lee J H. Acc Chem Res , 2008 . 41 1630 - 1640 . DOI:10.1021/ar800045chttp://doi.org/10.1021/ar800045c .
Burts A O, Li Y, Zhukhovitskiy A V, Patel P R, Grubbs R H, Ottaviani M F, Turro N J, Johnson J A. Macromolecules , 2012 . 45 8310 - 8318 . DOI:10.1021/ma301874dhttp://doi.org/10.1021/ma301874d .
Sowers M A, McCombs J R, Wang Y, Paletta J T, Morton S W, Dreaden E C, Boska M D, Ottaviani M F, Hammond P T, Rajca A, Johnson J A. Nat Commun , 2014 . 5 5460 DOI:10.1038/ncomms6460http://doi.org/10.1038/ncomms6460 .
Alvaradejo G G, Nguyen H V T, Harvey P, Gallagher N M, Le D, Ottaviani M F, Jasanoff A, Delaittre G, Johnson J A. ACS Macro Lett , 2019 . 8 473 - 478 . DOI:10.1021/acsmacrolett.9b00016http://doi.org/10.1021/acsmacrolett.9b00016 .
Zheng Z, Daniel A, Yu W, Weber B, Ling J, Müller A H E. Chem Mater , 2013 . 25 4585 - 4594 . DOI:10.1021/cm402776dhttp://doi.org/10.1021/cm402776d .
Hou L, Fang J, Wang W, Xie Z, Dong D, Zhang N. J Mater Chem B , 2017 . 5 3348 - 3354 . DOI:10.1039/C7TB00812Khttp://doi.org/10.1039/C7TB00812K .
Gadwal I, Rao J, Baettig J, Khan A. Macromolecules , 2014 . 47 35 - 40 . DOI:10.1021/ma402259qhttp://doi.org/10.1021/ma402259q .
Zolotarskaya O Y, Yuan Q, Wynne K J, Yang H. Macromolecules , 2013 . 46 63 - 71 . DOI:10.1021/ma3021294http://doi.org/10.1021/ma3021294 .
Jiang R, Lu X, Yang M, Deng W, Fan Q, Huang W. Biomacromolecules , 2013 . 14 3643 - 3652 . DOI:10.1021/bm401000xhttp://doi.org/10.1021/bm401000x .
Li J, Tian C, Yuan Y, Yang Z, Yin C, Jiang R, Song W, Li X, Lu X, Zhang L, Fan Q, Huang W. Macromolecules , 2015 . 48 1017 - 1025 . DOI:10.1021/ma5021775http://doi.org/10.1021/ma5021775 .
Ding D, Li K, Zhu Z, Pu K Y, Hu Y, Jiang X, Liu B. Nanoscale , 2011 . 3 1997 - 2002 . DOI:10.1039/c0nr00950dhttp://doi.org/10.1039/c0nr00950d .
Liu F, Zhao X, Zhang X, Zhang X, Peng J, Yang H, Deng K, Ma L, Chang C, Wei H. Polym Chem , 2018 . 9 4866 - 4874 . DOI:10.1039/C8PY01221Khttp://doi.org/10.1039/C8PY01221K .
Yang C, Huang S, Wang X, Wang M. Polym Chem , 2016 . 7 7455 - 7468 . DOI:10.1039/C6PY01838Fhttp://doi.org/10.1039/C6PY01838F .
Maione S, Fabregat G, del Valle L J, Bendrea A D, Cianga L, Cianga I, Estrany F, Alemán C. J Polym Sci, Part B: Polym Phys , 2015 . 53 239 - 252.
Fouz M F, Mukumoto K, Averick S, Molinar O, McCartney B M, Matyjaszewski K, Armitage B A, Das S R. ACS Central Sci , 2015 . 1 431 - 438 . DOI:10.1021/acscentsci.5b00259http://doi.org/10.1021/acscentsci.5b00259 .
Blum A P, Kammeyer J K, Gianneschi N C. Chem Sci , 2016 . 7 989 - 994 . DOI:10.1039/C5SC03417Ehttp://doi.org/10.1039/C5SC03417E .
Blum A P, Kammeyer J K, Yin J, Crystal D T, Rush A M, Gilson M K, Gianneschi N C. J Am Chem Soc , 2014 . 136 15422 - 15437 . DOI:10.1021/ja5088216http://doi.org/10.1021/ja5088216 .
Yadavalli N S, Borodinov N, Choudhury C K, Quiñones-Ruiz T, Laradji A M, Tu S, Lednev I K, Kuksenok O, Luzinov I, Minko S. ACS Catal , 2017 . 7 8675 - 8684 . DOI:10.1021/acscatal.7b03138http://doi.org/10.1021/acscatal.7b03138 .
0
浏览量
120
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构