浏览全部资源
扫码关注微信
大连理工大学化工学院 精细化工国家重点实验室 大连 116024
E-mail: guofang@dlut.edu.cn Fang Guo, E-mail: guofang@dlut.edu.cn
纸质出版日期:2020-7,
网络出版日期:2020-4-16,
收稿日期:2020-2-7,
修回日期:2020-3-10,
扫 描 看 全 文
林秀崇, 王胤然, 姜磊, 郭方. 含“Si―H”基团聚乙烯的合成及功能化研究[J]. 高分子学报, 2020,51(7):771-776.
Xiu-chong Lin, Yin-ran Wang, Lei Jiang, Fang Guo. Synthesis of “Si―H” Containing Polyethylene and Its Functionalization[J]. Acta Polymerica Sinica, 2020,51(7):771-776.
林秀崇, 王胤然, 姜磊, 郭方. 含“Si―H”基团聚乙烯的合成及功能化研究[J]. 高分子学报, 2020,51(7):771-776. DOI: 10.11777/j.issn1000-3304.2020.20023.
Xiu-chong Lin, Yin-ran Wang, Lei Jiang, Fang Guo. Synthesis of “Si―H” Containing Polyethylene and Its Functionalization[J]. Acta Polymerica Sinica, 2020,51(7):771-776. DOI: 10.11777/j.issn1000-3304.2020.20023.
采用(C
5
Me
4
SiMe
3
)Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
1
)、(C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
2
)两种单茂钪催化剂,考察了其催化10-二甲基硅基-1-癸烯(Decene-SiH)均聚合以及与乙烯共聚合的性能,并通过NMR、GPC和DSC对所获共聚物的微观结构和热性能进行了分析. 结果表明,在室温1.01 × 10
5
Pa 乙烯压力下,单茂钪
2
对乙烯与Decene-SiH共聚合表现了极高的催化活性(10
5
g聚合物mol
Sc
−1
h
−1
),Decene-SiH转化率达99%. 改变Decene-SiH用量,获得了组成可控(Decene-SiH含量8 mol% ~ 50 mol%)、高分子量(7.2 × 10
4
~ 10.0 × 10
4
)、窄分布(
M
w
/
M
n
= 1.35 ~ 1.63)的乙烯/Decene-SiH共聚物. 当共聚物中Decene-SiH含量小于12 mol%时,Decene-SiH孤立插入聚乙烯链中;当共聚物中Decene-SiH含量大于26 mol%时,Decene-SiH可孤立和连续插入聚乙烯链中. 不同组成的乙烯/Decene-SiH共聚物具有一个118 ~ 130 °C的熔点,共聚物中Decene-SiH含量为50 mol%时具有一个−71 °C的玻璃化转变温度. 共聚物中Decene-SiH含量增加,聚乙烯结晶度明显降低. 乙烯/Decene-SiH共聚物中“Si―H”基团与烯丙基缩水甘油醚、
N
N
-二甲基丙烯酰胺、
p
-
N
N
-二甲基氨基苯乙烯和甲基丙烯酸甲酯4种物质在Karstedt's催化剂作用下发生硅氢加成反应,实现了“Si―H”基团100%转化,有效地将乙烯/Decene-SiH共聚物中“Si―H”基团转变为其他的极性基团,获得了4种具有亲水性质的功能化聚乙烯.
The polymerization of 10-dimethylsilyl-1-decene (Decene-SiH) and its copolymerization with ethylene by the half-sandwich scandium complexes (C
5
Me
4
SiMe
3
)Sc(CH
2
C
6
H
4
NMe
2
-
o
)
2
(
1
) and (C
5
Me
4
SiMe
3
)Sc(CH
2
SiMe
3
)
2
(THF) (
2
) have been examined. The microstructures and thermal properties of the obtained polymers were characterized by NMR
GPC and DSC. The copolymerization of ethylene with Decene-SiH under 1.01 × 10
5
Pa of ethylene has also been successfully achieved at room temperature. The copolymerization activity reached up to 10
5
g of polymer (mol of Sc)
−1
h
−1
and the conversion of Decene-SiH reached up to 99%. The ethylene/Decene-SiH copolymers with controllable compositions (Decene-SiH content = 8 mol% ~ 50 mol%)
high molecular weight (
M
n
= 7.2 × 10
4
~ 10.0 × 10
4
) and narrow molecular weight distribution (
M
w
/
M
n
= 1.35 ~ 1.63) were conveniently obtained by changing the feed of Decene-SiH. When the content was less than 12 mol%
the isolated insertion of Decene-SiH into polyethylene chain was achieved. When the content was more than 26 mol%
the isolated and continuous insertion of Decene-SiH into polyethylene chain was also achieved. The ethylene/Decene-SiH copolymers with different compositions possessed a melting point (118 − 130 °C) and the copolymers possessed a glass transition temperature at −71°C when the Decene-SiH content of the copolymer was 50 mol%. The crystallinity of polyethylene decreased significantly with the Decene-SiH content of the copolymers. The “Si―H” group in the ethylene/Decene-SiH copolymers reacted with allyl glycidyl ether
N
N
-dimethylacrylamide
p
-
N
N
-dimethylaminostyrene and methyl methacrylate under the Karstedt’s catalyst. The conversion of “Si―H” groups reached 100%. Versatile functionalized polyethylene with hydrophilic properties were obtained by efficiently transforming the “Si―H” groups of the resulting copolymers into other polar groups.
钪聚乙烯功能化共聚合硅氢加成
ScandiumPolyethyleneFunctionalizedCopolymerizationHydrosilylation
Chung T C. Macromolecules , 2013 . 46 ( 17 ): 6671 - 6698 . DOI:10.1021/ma401244thttp://doi.org/10.1021/ma401244t .
Boaen N K, Hillmyer M A. Chem Soc Rev , 2005 . 34 ( 3 ): 267 - 275 . DOI:10.1039/b311405hhttp://doi.org/10.1039/b311405h .
Franssen N M G, Reek J N H, Bruin B D. Chem Soc Rev , 2013 . 42 5809 - 5832 . DOI:10.1039/c3cs60032ghttp://doi.org/10.1039/c3cs60032g .
Yanjarappa M J, SivaramI S. Polym Sci , 2002 . 27 ( 7 ): 1347 - 1398.
Bacskai R. J Polym Sci, Part A: Polym Chem , 1965 . 3 ( 7 ): 2491 - 2510.
Galimberti M, Giannini U, Albizzati E, Caldari S, Abis L. J Mol Catal A-Chem , 1995 . 101 ( 1 ): l - 10.
Bruzaud S, Cramail H, Duvignac L, Deffieux A. Macromol Chem Phys , 1997 . 198 ( 2 ): 291 - 301 . DOI:10.1002/macp.1997.021980206http://doi.org/10.1002/macp.1997.021980206 .
Chung T C, Lu H L. J Mol Catal A-Chem , 1997 . 115 ( 1 ): 115 - 127 . DOI:10.1016/S1381-1169(96)00095-7http://doi.org/10.1016/S1381-1169(96)00095-7 .
Dong J Y, Hong H, Chung T C. Macromolecules , 2003 . 36 ( 16 ): 6000 - 6009 . DOI:10.1021/ma021749shttp://doi.org/10.1021/ma021749s .
Cao Chengang(曹晨刚), Liu Jiguang(刘继广), Dong Jinyong(董金勇), Hu Youliang(胡友良). Prog Chem(化学进展) , 2005 . ( 2 ): 320 - 335 . DOI:10.3321/j.issn:1005-281X.2005.02.018http://doi.org/10.3321/j.issn:1005-281X.2005.02.018 .
Chung T C, Dong J Y. Macromolecules , 2002 . 35 ( 8 ): 2868 - 2870 . DOI:10.1021/ma0117460http://doi.org/10.1021/ma0117460 .
Woo H, Tilley T D. J Am Chem Soc , 1989 . 111 ( 20 ): 8043 - 8044 . DOI:10.1021/ja00202a070http://doi.org/10.1021/ja00202a070 .
Putzien S, Nuyken O, KühnFritz E. Prog Polym Sci , 2010 . 35 ( 6 ): 687 - 713 . DOI:10.1016/j.progpolymsci.2010.01.007http://doi.org/10.1016/j.progpolymsci.2010.01.007 .
Wang B, Ma H W, Wang Y S, Li Y. Chem Lett , 2013 . 42 915 - 917 . DOI:10.1246/cl.130267http://doi.org/10.1246/cl.130267 .
Guo F, Wang B, Ma H, Li T, Li Y. J Polym Sci, Part A: Polym Chem , 2016 . 54 735 - 739 . DOI:10.1002/pola.27923http://doi.org/10.1002/pola.27923 .
Han Li(韩丽). Study on the Synthsis and Performance Control of Side Chain Liquid Crystalline Polymers(侧链液晶高分子的设计合成与性能调控研究). Doctoral Dissertation of Dalian University of Technology(大连理工大学博士学位论文), 2017
Zhang Fengxiang(张凤香), Bai Ying(白赢), Xu Yisong(徐艺凇), Li Jiayun(厉嘉云), Peng Jiajian(彭家建). Journal of Hangzhou Normal University(杭州师范大学学报) , 2015 . ( 5 ): 449 - 453.
Morishima Y, Hashimoto T, Itoh Y, Kamachi M, Nozakura S. J Polym Sci, Part A: Polym Chem , 1982 . 20 ( 2 ): 299 - 310 . DOI:10.1002/pol.1982.170200204http://doi.org/10.1002/pol.1982.170200204 .
Barton T J, Revis A, Davidson I M T, Ijadi-Maghsoodi S, Hughes K J, Gordon M S. J Am Chem Soc , 1986 . 108 ( 14 ): 4022 - 4026 . DOI:10.1021/ja00274a028http://doi.org/10.1021/ja00274a028 .
Luo Y, Baldamus J, Hou Z. J Am Chem Soc , 2004 . 126 ( 43 ): 13910 - 13911 . DOI:10.1021/ja046063phttp://doi.org/10.1021/ja046063p .
Li X, Nishiura M, Mori K, Mashiko T, Hou Z. Chem Commun , 2007 . 40 4137 - 4139.
Guo F, Nishiura M, Koshino H, Hou Z. Macromolecules , 2011 . 44 ( 16 ): 6335 - 6344 . DOI:10.1021/ma201271rhttp://doi.org/10.1021/ma201271r .
Chiem J C W, Tsai W M, Rausch M D. J Am Chem Soc , 1991 . 113 ( 22 ): 8570 - 8571 . DOI:10.1021/ja00022a081http://doi.org/10.1021/ja00022a081 .
Kang X, Zhou G, Wang X, Qu J, Hou Z, Luo Y. Organometallics , 2016 . 35 ( 6 ): 913 - 920 . DOI:10.1021/acs.organomet.6b00081http://doi.org/10.1021/acs.organomet.6b00081 .
Luo Y, Luo Y, Qu J, Hou Z. Organometallics , 2011 . 30 ( 11 ): 2908 - 2919 . DOI:10.1021/om100998chttp://doi.org/10.1021/om100998c .
0
浏览量
28
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构