浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
3.中国石油天然气股份有限公司石油化工研究院 北京 102206
E-mail: jydong@iccas.ac.cn
纸质出版日期:2020-8-15,
网络出版日期:2020-5-22,
收稿日期:2020-2-12,
修回日期:2020-4-3,
扫 描 看 全 文
刘洋, 秦亚伟, 王莉, 义建军, 董金勇. 长碳链非共轭
Yang Liu, Ya-wei Qin, Li Wang, Jian-jun Yi, Jin-yong Dong. Flowability of Ethylene-Propylene Copolymer in Situ-regulated by Long-chain Nonconjugated
刘洋, 秦亚伟, 王莉, 义建军, 董金勇. 长碳链非共轭
Yang Liu, Ya-wei Qin, Li Wang, Jian-jun Yi, Jin-yong Dong. Flowability of Ethylene-Propylene Copolymer in Situ-regulated by Long-chain Nonconjugated
通过乙丙共聚物的原位交联,可以降低其分子链运动性,从而在丙烯多相共聚过程中,实现对合金相形貌的控制. 但在Ziegler-Natta催化剂体系中,长碳链的非共轭
α
ω
-双烯烃在促进交联的同时,伴随着悬垂双键结构的形成,其对原位交联效果的影响尚不清楚. 本文选用9
9-二(甲氧基甲基)芴为内给电子体的MgCl
2
/TiCl
4
催化剂,1
9-癸二烯为交联剂,合成了系列乙丙共聚物,通过对链结构和流动性的分析发现,交联结构的形成明显滞后于悬垂双键,且乙丙共聚物流动性随1
9-癸二烯浓度增加呈现不规则的U型变化:当1
9-癸二烯浓度小于0.22 mol/L时,乙丙共聚物流动性增强;当浓度高于0.22 mol/L时,流动性受限. 本研究对以非共轭
α
ω
-双烯烃控制丙烯多相共聚反应和新型聚丙烯反应器合金的合成有一定指导作用.
In heterophasic copolymerization of propylene to high-impact PP copolymer
an emerging approach to control of the all-important copolymer particle morphology is
in situ
crosslinking the ethylene-propylene copolymer (EPR) by nonconjugated
α
ω
-diolefin. With the formation of crosslinking structure
pendant unsaturation structure supervened and its role was unveiled. This paper discusses the effect of pendant unsaturation structure on EPR’s flowability. A series of EPR samples with increasing crosslinking degrees were synthesized by an MgCl
2
/9
9-bis (methoxymethyl) fluorene/TiCl
4
catalyst and 1
9-decadiene of increasing concentrations. The copolymers were characterized by NMR
GPC
and DSC for chain structure
small amplitude oscillatory shear for linear viscoelasticity
and creep rheology for flowability. Increasing 1
9-decadiene concentration increased the EPR crosslinking degree monotonously; nevertheless
its effect on viscoelasticity was rather complex. Chain structure analyses reveal that in terms of effect on viscoelasticity
two opposite reaction processes are in progress in ethylene/propylene copolymerizaiton with
in situ
crosslinking by 1
9-decadiene
one being crosslinking itself
the other the accompanying fomation of pendant
α
-olefin unsaturations which are short chain-branching in essence. It is perceived that the sluggishness of Ziegler-Natta catalyst to sterically bulky
α
-olefin makes the progression of crosslinking lag behind that of short chain-branching
which accounts for the peculiar U-shape in EPR flowability and 1
9-decadiene concentration relation.
非共轭αω-双烯烃乙丙共聚原位交联Ziegler-Natta催化剂流动性
Nonconjugated αω-diolefinEthylene-propylene copolymerizationin situ crosslinkingZiegler-Natta catalystFlowability
Galli P. Macromol Symp , 1994 . 78 269 - 284 . DOI:10.1002/masy.19940780123http://doi.org/10.1002/masy.19940780123 .
Cecchin G. Macromol Symp , 1994 . 78 213 - 228 . DOI:10.1002/masy.19940780119http://doi.org/10.1002/masy.19940780119 .
Cecchin G, Morini G, Pelliconi A. Macromol Symp , 2001 . 173 195 - 209 . DOI:10.1002/1521-3900(200108)173:1<195::AID-MASY195>3.0.CO;2-Ahttp://doi.org/10.1002/1521-3900(200108)173:1<195::AID-MASY195>3.0.CO;2-A .
Galli P, Vecellio G. Prog Polym Sci , 2001 . 26 ( 8 ): 1287 - 1336 . DOI:10.1016/S0079-6700(01)00029-6http://doi.org/10.1016/S0079-6700(01)00029-6 .
De Rosa C, Auriemma F, Tarallo O, Di Girolamo R, Troisi E M, Esposito S, Liguori D, Piemontesi F, Vitale G, Morini G. Polym Chem , 2017 . 8 ( 4 ): 655 - 660 . DOI:10.1039/C6PY01950Ahttp://doi.org/10.1039/C6PY01950A .
Gahleitner M, Tranninger C, Doshev P. J Appl Polym Sci , 2013 . 130 ( 5 ): 3028 - 3037 . DOI:10.1002/app.39626http://doi.org/10.1002/app.39626 .
Zhang B, Fu Z S, Fan Z Q, Phiriyawirut P, Charoenchaidet S. J Appl Polym Sci , 2016 . 133 ( 8.
Aarnio-Winterhof M, Doshev P, Seppala J, Gahleitner M. Express Polym Lett , 2017 . 11 ( 2 ): 152 - 161 . DOI:10.3144/expresspolymlett.2017.16http://doi.org/10.3144/expresspolymlett.2017.16 .
Debling J A, Ray W H. J Appl Polym Sci , 2001 . 81 ( 13 ): 3082 - 3106.
Martin C, McKenna T F. Chem Eng J , 2002 . 87 ( 1 ): 89 - 99 . DOI:10.1016/S1385-8947(01)00205-4http://doi.org/10.1016/S1385-8947(01)00205-4 .
McKenna T F, Soares J B P. Chem Eng Sci , 2001 . 56 ( 13 ): 3931 - 3949 . DOI:10.1016/S0009-2509(01)00069-0http://doi.org/10.1016/S0009-2509(01)00069-0 .
Shi J, Dong J Y. Polymer , 2016 . 85 10 - 18 . DOI:10.1016/j.polymer.2016.01.024http://doi.org/10.1016/j.polymer.2016.01.024 .
Zhang Mengjia(张孟佳), Wang Li(王莉), Hong Liuting(洪柳婷), Qin Yawei(秦亚伟), Dong Jinyong(董金勇). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 2 ): 166 - 173 . DOI:10.11777/j.issn1000-3304.2019.19115http://doi.org/10.11777/j.issn1000-3304.2019.19115 .
Debling J A, Ray W H. Ind Eng Chem Res , 1995 . 34 ( 10 ): 3466 - 3480 . DOI:10.1021/ie00037a035http://doi.org/10.1021/ie00037a035 .
Debling J A, Zacca J J, Ray W H. Chem Eng Sci , 1997 . 52 ( 12 ): 1969 - 2001 . DOI:10.1016/S0009-2509(97)00025-0http://doi.org/10.1016/S0009-2509(97)00025-0 .
Cui X M. Chem Ind , 2008 . 26 ( 5 ): 23 - 31.
Yang T, Qin Y, Dong J Y. Macromolecules , 2018 . 51 ( 22 ): 9234 - 9249 . DOI:10.1021/acs.macromol.8b01958http://doi.org/10.1021/acs.macromol.8b01958 .
Naga N, Imanishi Y. Macromol Chem Phys , 2002 . 203 ( 15 ): 2155 - 2162 . DOI:10.1002/1521-3935(200211)203:15<2155::AID-MACP2155>3.0.CO;2-7http://doi.org/10.1002/1521-3935(200211)203:15<2155::AID-MACP2155>3.0.CO;2-7 .
Ye Z B, AlObaidi F, Zhu S P. Ind Eng Chem Res , 2004 . 43 ( 11 ): 2860 - 2870 . DOI:10.1021/ie0499660http://doi.org/10.1021/ie0499660 .
Mehdiabadi S, Soares J B P. Macromolecules , 2011 . 44 ( 20 ): 7926 - 7939 . DOI:10.1021/ma201368chttp://doi.org/10.1021/ma201368c .
Tynys A, Eilertsen J L, Seppala J V, Rytter E. Polymer , 2007 . 48 ( 10 ): 2793 - 2805 . DOI:10.1016/j.polymer.2007.03.036http://doi.org/10.1016/j.polymer.2007.03.036 .
Lu L, Niu H, Dong J Y, Zhao X, Hu X. J Appl Polym Sci , 2010 . 118 ( 6 ): 3218 - 3226 . DOI:10.1002/app.32553http://doi.org/10.1002/app.32553 .
Hollandmoritz K. Colloid Polym Sci , 1975 . 253 ( 11 ): 922 - 928 . DOI:10.1007/BF01592263http://doi.org/10.1007/BF01592263 .
0
浏览量
23
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构