浏览全部资源
扫码关注微信
西北工业大学化学与化工学院 西安 710129
E-mail: liugenqi@nwpu.edu.cn
纸质出版日期:2020-7,
网络出版日期:2020-5-27,
收稿日期:2020-2-12,
修回日期:2020-3-18,
扫 描 看 全 文
刘晨辉, 刘根起, 任宸锐, 史红凯, 薛珂, 曹云雷, 李欢欢, 刘建勋. 高灵敏度二维光子晶体水凝胶Cu2+传感器[J]. 高分子学报, 2020,51(7):762-770.
Chen-hui Liu, Gen-qi Liu, Chen-rui Ren, Hong-kai Shi, Ke Xue, Yun-lei Cao, Huan-huan Li, Jian-xun Liu. Highly Sensitive Two-dimensional Photonic Crystal Hydrogel Cu2+ Sensor[J]. Acta Polymerica Sinica, 2020,51(7):762-770.
刘晨辉, 刘根起, 任宸锐, 史红凯, 薛珂, 曹云雷, 李欢欢, 刘建勋. 高灵敏度二维光子晶体水凝胶Cu2+传感器[J]. 高分子学报, 2020,51(7):762-770. DOI: 10.11777/j.issn1000-3304.2020.20030.
Chen-hui Liu, Gen-qi Liu, Chen-rui Ren, Hong-kai Shi, Ke Xue, Yun-lei Cao, Huan-huan Li, Jian-xun Liu. Highly Sensitive Two-dimensional Photonic Crystal Hydrogel Cu2+ Sensor[J]. Acta Polymerica Sinica, 2020,51(7):762-770. DOI: 10.11777/j.issn1000-3304.2020.20030.
以聚苯乙烯二维光子晶体阵列为模板,戊二醛为交联剂,制备了聚乙烯醇二维光子晶体水凝胶(PVA 2DPCH),再以巯基乙酸为酯化剂,通过聚乙烯醇(PVA)的巯基化改性,得到巯基化聚乙烯醇二维光子晶体水凝胶(PVA-SH 2DPCH). 利用德拜环法,研究了PVA-SH 2DPCH对Cu
2+
的响应行为. 结果表明,PVA-SH 2DPCH对Cu
2+
具有超灵敏响应,在Cu
2+
溶液中,凝胶收缩,其德拜环直径(
D
)随Cu
2+
浓度的增大而增大,当Cu
2+
浓度由0增加至10
−15
mol/L时,其德拜环直径即可增加0.45 cm,当浓度继续增大到10
−7
mol/L时,其德拜环直径(Δ
D
)可增加0.85 cm. 当Cu
2+
浓度在10
−15
~ 10
−7
mol/L范围内时,PVA-SH 2DPCH的德拜环直径变化(Δ
D
)与Cu
2+
浓度(
c
)呈线性关系,其线性回归方程为Δ
D
= 1.195 + 0.0493 × log
c
,(Δ
D
cm;
c
mol/L),
R
2
= 0.99899. 以制备的PVA-SH 2DPCH为Cu
2+
传感器,利用德拜环法表征溶液中Cu
2+
的浓度,方法简单快速兼具无标记、可视化检测的特点,为现场实时检测Cu
2+
提供了可能.
Two-dimensional poly(vinyl alcohol) hydrogel (PVA 2DPCH) was prepared by using two-dimensional photonic crystal array of polystyrene as template and glutaraldehyde as cross-linking agent. Then the mercaptopolyvinyl alcohol two-dimensional photonic crystal hydrogel (PVA-SH 2DPCH) was obtained through thiolization modification of poly(vinyl alcohol) (PVA)
with mercaptoacetic acid as esterifying agent. The response behavior of PVA-SH 2DPCH to Cu
2+
was studied with the Debye ring method. The results showed that PVA-SH 2DPCH had a high-sensitive response to Cu
2+
. The gel shrunk in Cu
2+
solution
and its Debye ring diameter (
D
) increased with increasing concentration of Cu
2+
. When the concentration of Cu
2+
increased from 0 to 10
−15
mol/L
its Debye ring diameter increased by 0.45 cm; when the concentration continued to 10
−7
mol/L
its Debye ring diameter (Δ
D
) increased by 0.85 cm. To conclude
when the concentration of Cu
2+
is in the range of 10
−15
− 10
−7
mol/L
the Debye ring diameter change (Δ
D
) of PVA-SH 2DPCH has a linear relationship with the concentration of Cu
2+
(
c
)
and the linear regression equation is Δ
D
= 1.195 + 0.0493 × log
c
(Δ
D
(cm)
c
(mol/L))
R
2
= 0.99899. With the prepared PVA-SH 2DPCH as a Cu
2+
sensor
and the Debye ring method is adopted to characterize the concentration of Cu
2+
in the solution. Featured by marker-free and visible detection
the Debye ring method is simple but highly efficient
which provides the possibility for real-time detection of Cu
2+
in the field.
二维光子晶体水凝胶Cu2+化学传感器巯基化聚乙烯醇德拜环
Two-dimentional photonic crystalHydrogelDetermination of Cu2+Chemical sensorThiolated polyvinyl alcoholDebye ring
Yablonovitch E. Phys Rev Lett , 1987 . 58 ( 20 ): 2059 - 2062 . DOI:10.1103/PhysRevLett.58.2059http://doi.org/10.1103/PhysRevLett.58.2059 .
John S. Phys Rev Lett , 1987 . 58 2486 - 2489 . DOI:10.1103/PhysRevLett.58.2486http://doi.org/10.1103/PhysRevLett.58.2486 .
Hong Wei(洪伟). Fabrication and Application of Stimuli-Responsive Photonic Hydrogels(响应性光子晶体水凝胶的构筑与应用). Doctoral Dissertation of Shanghai Jiao Tong University(上海交通大学博士学位论文), 2014.
Weissman J M, Sunkara H B, Tse A S, Asher S A. Science , 1996 . 274 ( 5289 ): 959 - 960 . DOI:10.1126/science.274.5289.959http://doi.org/10.1126/science.274.5289.959 .
Takeoka Y, Watanabe M. Langmuir , 2003 . 19 ( 22 ): 9104 - 9106 . DOI:10.1021/la035142whttp://doi.org/10.1021/la035142w .
Holtz J H, Asher S A. Nature , 1997 . 389 ( 6653 ): 829 - 832 . DOI:10.1038/39834http://doi.org/10.1038/39834 .
Lee K, Asher S A. J Am Chem Soc , 2000 . 122 ( 39 ): 9534 - 9537 . DOI:10.1021/ja002017nhttp://doi.org/10.1021/ja002017n .
Lee Y J, Braun P V. Adv Mater , 2003 . 15 ( 78 ): 563 - 566 . DOI:10.1002/adma.200304588http://doi.org/10.1002/adma.200304588 .
Puzzo D P, Arsenault A C, Manners I, Ozin G A. Angew Chem Int Ed , 2009 . 48 ( 5 ): 943 - 947 . DOI:10.1002/anie.200804391http://doi.org/10.1002/anie.200804391 .
Sumioka K, Kayashima H, Tsutsui T. Adv Mater , 2002 . 14 ( 18 ): 1284 - 1286 . DOI:10.1002/1521-4095(20020916)14:18<1284::AID-ADMA1284>3.0.CO;2-1http://doi.org/10.1002/1521-4095(20020916)14:18<1284::AID-ADMA1284>3.0.CO;2-1 .
Xu X, Friedman G, Humfeld K D, Majetich S A, Asher S A. Adv Mater , 2001 . 13 ( 22 ): 1681 - 1684 . DOI:10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-Ghttp://doi.org/10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G .
Ge J, Hu Y, Yin Y. Angew Chem Int Ed , 2007 . 46 ( 39 ): 7428 - 7431 . DOI:10.1002/anie.200701992http://doi.org/10.1002/anie.200701992 .
Arsenault A C, Clark T J, von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I. Nat Mater , 2006 . 5 ( 3 ): 179 - 184 . DOI:10.1038/nmat1588http://doi.org/10.1038/nmat1588 .
Asher S A, Alexeev V L, Goponenko A V, Sharma A C, Lednev I K, Wilcox C S, Finegold D N. J Am Chem Soc , 2003 . 125 ( 11 ): 3322 - 3329 . DOI:10.1021/ja021037hhttp://doi.org/10.1021/ja021037h .
Nakayama D, Takeoka Y, Watanabe M, Kataoka K. Angew Chem Int Ed , 2003 . 42 4197 - 4200 . DOI:10.1002/anie.200351746http://doi.org/10.1002/anie.200351746 .
Walker J P, Kimble K W, Asher S A. Anal Bioanal Chem , 2007 . 389 2115 - 2124 . DOI:10.1007/s00216-007-1599-yhttp://doi.org/10.1007/s00216-007-1599-y .
Sounder B, Prashant P, Seo S S. Soft Mater , 2013 . 11 40 - 44 . DOI:10.1080/1539445X.2011.570633http://doi.org/10.1080/1539445X.2011.570633 .
Liu F, Huang S, Xue F, wang Y, Meng Z, Xue M. Biosens Bioelectron , 2012 . 32 273 - 277 . DOI:10.1016/j.bios.2011.11.012http://doi.org/10.1016/j.bios.2011.11.012 .
Hong W, Chen Y, Feng X, Yan Y, Hu X, Zhao B, Zhang F, Zhang D, Xu Z, Lai Y. Chem Commun , 2013 . 49 ( 74 ): 8229 - 8231 . DOI:10.1039/c3cc44825hhttp://doi.org/10.1039/c3cc44825h .
Georgopoulos P G, Roy A, Yonone-Lioy M J, Opiekun R E, Lioy P J. J Toxicol Environ Health B , 2001 . 4 ( 4 ): 341 - 394 . DOI:10.1080/109374001753146207http://doi.org/10.1080/109374001753146207 .
Naguib I A, Elyazeed N A, Elroby F A, El~Ghobashy M R. Spectrochim Acta Part A , 2019 . 214 21 - 31 . DOI:10.1016/j.saa.2019.01.080http://doi.org/10.1016/j.saa.2019.01.080 .
de Oliveira L L G, Ferreira G O, Suquila F A C, de Almeida F G, Bertoldo L A, Segatelli M G, Ribeiro E S, Tarley C R T. Food Chem , 2019 . 294 405 - 413 . DOI:10.1016/j.foodchem.2019.05.061http://doi.org/10.1016/j.foodchem.2019.05.061 .
Felix C S A, Silva D G, Andrade H M C, Riatto V B, Victor M M, Ferreira S L C. Talanta , 2018 . 184 87 DOI:10.1016/j.talanta.2018.02.089http://doi.org/10.1016/j.talanta.2018.02.089 .
Lv H, Zhang Y, Sun Y, Duan Y. Microchem J , 2019 . 146 931 - 939 . DOI:10.1016/j.microc.2019.02.035http://doi.org/10.1016/j.microc.2019.02.035 .
Tehrani M W, Huang R, Guimarães D, Smieska L, Woll A, Parsons P J J. Trace Elem Med Biol , 2019 . 55 143 - 153 . DOI:10.1016/j.jtemb.2019.05.013http://doi.org/10.1016/j.jtemb.2019.05.013 .
Zhang J, Zeng Y, Slatt R. Fuel , 2019 . 254 115565 DOI:10.1016/j.fuel.2019.05.148http://doi.org/10.1016/j.fuel.2019.05.148 .
Vishenkova D A, Korotkova E I J. Anal Chem , 2017 . 72 ( 4 ): 349 - 353 . DOI:10.1134/S1061934817040153http://doi.org/10.1134/S1061934817040153 .
Al Owais A A, El~Hallag I S. Chem Pap , 2019 . 73 ( 9 ): 2353 - 2362 . DOI:10.1007/s11696-019-00788-9http://doi.org/10.1007/s11696-019-00788-9 .
Abduljabbar T N, Sharp B L, Reid H J, Barzegar Befroeid N, Peto T, Lengyel I. Talanta , 2019 . 204 663 - 669 . DOI:10.1016/j.talanta.2019.05.098http://doi.org/10.1016/j.talanta.2019.05.098 .
Asher S A, Sharma A C, Goponenko A V, Ward M M. Anal Chem , 2003 . 75 ( 7 ): 1676 - 1683 . DOI:10.1021/ac026328nhttp://doi.org/10.1021/ac026328n .
Jiang H, Zhu Y, Chen C, Shen J, Bao H, Peng L, Yang X, Li C. New J Chem , 2012 . 36 ( 4 ): 1051 - 1056 . DOI:10.1039/c2nj20989fhttp://doi.org/10.1039/c2nj20989f .
Liu Shirong(刘士荣), Qin Liyan(秦立彦), Zhang Xiaodong(张晓栋), Chen Mingqing(陈明清). Chemical Journal of Chinese University(高等学校化学学报) , 2017 . 38 ( 11 ): 1993 - 1998 . DOI:10.7503/cjcu20170519http://doi.org/10.7503/cjcu20170519 .
Yin T, Zhong D, Liu J, Liu X, Yu H, Qu S. Soft Matter , 2018 . 14 ( 7 ): 1120 - 1129 . DOI:10.1039/C7SM02322Ghttp://doi.org/10.1039/C7SM02322G .
Smith N L, Coukouma A, Dubnik S, Asher S A. Phys Chem Chem Phys , 2017 . 19 ( 47 ): 31813 - 31822 . DOI:10.1039/C7CP07130Bhttp://doi.org/10.1039/C7CP07130B .
Tikhonov A, Kornienko N, Zhang J T, Wang L, Asher S A. J Nanophoton , 2012 . 6 ( 1 ): 063509 DOI:10.1117/1.JNP.6.063509http://doi.org/10.1117/1.JNP.6.063509 .
Cai Z Y, Smith N L, Zhang J T, Asher S A. Anal Chem , 2015 . 87 ( 10 ): 5013 - 5025 . DOI:10.1021/ac504679nhttp://doi.org/10.1021/ac504679n .
Ren Chenrui(任宸锐), Liu Genqi(刘根起), Qin Xiatong(秦夏彤), Liu Chenhui(刘晨辉), Fan Xiaodong(范晓东). Chemical Journal of Chinese University(高等学校化学学报) , 2019 . 40 ( 7 ): 1520 - 1526 . DOI:10.7503/cjcu20180862http://doi.org/10.7503/cjcu20180862 .
Qin Xiatong(秦夏彤), Liu Genqi(刘根起), Liu Chenhui(刘晨辉), Liu Jianxun(刘建勋), Li Huanhuan(李欢欢),Cao Yunlei(曹云雷), Fan Xiaodong(范晓东). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 2 ): 191 - 197 . DOI:10.11777/j.issn1000-3304.2019.19170http://doi.org/10.11777/j.issn1000-3304.2019.19170 .
Chen Xiaojuan(陈小娟), Liu Genqi(刘根起), Ren Chenrui(任宸锐), Gao Minjun(高敏君), Fan Xiaodong(范晓东). Chemical Journal of Chinese University(高等学校化学学报) , 2018 . 39 ( 2 ): 212 - 218 . DOI:10.7503/cjcu20170571http://doi.org/10.7503/cjcu20170571 .
Xue F, Meng Z H, Wang F Y, Wang Q H, Xue M, Xu Z B. J Mater Chem A , 2014 . 2 ( 25 ): 9559 - 9565 . DOI:10.1039/C4TA01031Khttp://doi.org/10.1039/C4TA01031K .
Lee Y J, Pruzinsky S A, Braun P V. Langmuir , 2004 . 20 ( 8 ): 3096 - 3106 . DOI:10.1021/la035555xhttp://doi.org/10.1021/la035555x .
Zhang J T, Chao X, Liu X Y, Asher S A. Chem Commun , 2013 . 49 ( 56 ): 6337 - 6339 . DOI:10.1039/c3cc43396jhttp://doi.org/10.1039/c3cc43396j .
Reese C E, Asher S A. J Colloid Interf Sci , 2002 . 248 ( 1 ): 41 - 46 . DOI:10.1006/jcis.2001.8193http://doi.org/10.1006/jcis.2001.8193 .
Zhang J T, Cai Z, Kwak D H, Liu X, Asher S A. Anal Chem , 2014 . 86 ( 18 ): 9036 - 9041 . DOI:10.1021/ac5015854http://doi.org/10.1021/ac5015854 .
Chaiyo S, Siangprof W, Apilux A, Chailapakul O. Anal Chim Acta , 2015 . 866 75 - 83 . DOI:10.1016/j.aca.2015.01.042http://doi.org/10.1016/j.aca.2015.01.042 .
Nil O, Asli B. Int J Environ Anal Chem , 2018 . 98 ( 7 ): 685 - 694 . DOI:10.1080/03067319.2018.1495201http://doi.org/10.1080/03067319.2018.1495201 .
Hutton L A, O’neil G D, Read T L, Ayres Z J, Newton M E, Macpherson J V. Anal Chem , 2014 . 86 ( 9 ): 4566 - 4572 . DOI:10.1021/ac500608dhttp://doi.org/10.1021/ac500608d .
Arslan Z, Oymak T, White J. Anal Chim Acta , 2018 . 1008 18 - 28 . DOI:10.1016/j.aca.2018.01.017http://doi.org/10.1016/j.aca.2018.01.017 .
Ahour F, Taheri M. J Iran Chem Soc , 2018 . 15 343 - 350 . DOI:10.1007/s13738-017-1235-5http://doi.org/10.1007/s13738-017-1235-5 .
0
浏览量
27
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构