浏览全部资源
扫码关注微信
1.应用表面与胶体化学教育部重点实验室 陕西师范大学化学化工学院 西安 710119
2.西北工业大学化学与化工学院 西安 710072
E-mail: yangpeng@snnu.edu.cn Peng Yang, E-mail: yangpeng@snnu.edu.cn
纸质出版日期:2020-8,
网络出版日期:2020-5-21,
收稿日期:2020-3-2,
修回日期:2020-3-30,
扫 描 看 全 文
杨庆敏, 刘永春, 陈立新, 杨鹏. 纤维蛋白原类淀粉样聚集膜的制备及其性能研究[J]. 高分子学报, 2020,51(8):890-900.
Qing-min Yang, Yong-chun Liu, Li-xin Chen, Peng Yang. Study on the Amyloid-like Fibrinogen-based Nanofilm[J]. Acta Polymerica Sinica, 2020,51(8):890-900.
杨庆敏, 刘永春, 陈立新, 杨鹏. 纤维蛋白原类淀粉样聚集膜的制备及其性能研究[J]. 高分子学报, 2020,51(8):890-900. DOI: 10.11777/j.issn1000-3304.2020.20051.
Qing-min Yang, Yong-chun Liu, Li-xin Chen, Peng Yang. Study on the Amyloid-like Fibrinogen-based Nanofilm[J]. Acta Polymerica Sinica, 2020,51(8):890-900. DOI: 10.11777/j.issn1000-3304.2020.20051.
利用血液中含量丰富的糖蛋白—纤维蛋白原,通过纤维蛋白原与还原剂三(2-羧乙基)磷盐酸盐(TCEP)反应,制备了基于纤维蛋白原类淀粉样聚集的纳米薄膜. 利用荧光光谱、远紫外-圆二色谱等光学表征手段,探究了纤维蛋白原与TCEP反应的动力学过程及其二级结构的变化;通过透射电子显微镜对薄膜结构进行了表征;用原子力显微镜和光学椭偏仪探讨了反应时间、纤维蛋白原浓度、TCEP溶液pH值以及浓度对薄膜厚度的影响,通过原子力显微镜表征了其在不同溶剂中浸泡的稳定性;最后通过薄膜的血小板吸附实验和对蛋白质的吸附实验,表征了其抗污能力. 实验结果表明:通过反应条件的控制,实现了对薄膜厚度的可控,且薄膜在不同的环境中表现出优异的稳定性;薄膜表现出了对血小板、蛋白质、生物体液(如胎牛血清、牛奶等)等非特异性吸附的良好抵抗能力,有望作为新一代生物基抗污材料运用于表/界面改性领域.
The fibrinogen nanofilm was prepared by using the reaction between fibrinogen and the reducing agent tris(2-carboxyethyl) phosphate hydrochloride (TCEP) and resultant amyloid-like aggregation. The kinetics of the reaction between fibrinogen and TCEP and the change of its secondary structure were investigated with optical characterization methods such as fluorescence spectrum and far ultraviolet-circular dichroism. The structure of the thin film was characterized by transmission electron microscopy. The concentration of fibrinogen
the pH value and concentration of TCEP buffer on the thickness of the film were investigated by atomic force microscope and optical ellipsometer. The film stability was characterized by atomic force microscopy. Finally
the antifouling ability of the film was measured by platelet adsorption and protein adsorption. The experimental result shows that by controlling the reaction conditions
the film thickness was controlled
and the film showed excellent stability in different environments. More important
the thin film showed certain resistance to platelet adsorption and model biofluid mixtures (
e.g
.
fetal bovine serum
milk). Therefore
the fibrinogen amyloid-like aggregation film reported in this article is expected to be used as a new type of bio-based materials in anti-thrombosis
vascula stent coating
anti-fouling coating and other biomedical engineering fields. The idea of phase-transited protein with strong non-specific adsorption through amyloid aggregation into anti-fouling coatings that resist non-specific adsorption of other molecules can inspire us to explore more anti-fouling systems based on functional protein aggregation mechanism.
纤维蛋白原纳米薄膜生物基材料表/界面改性淀粉样
FibrinogenNanofilmBio-based materialsSurface modificationAmyloid
Yang P, Yang W T. Chem Rev , 2013 . 113 ( 7 ): 5547 - 5594 . DOI:10.1021/cr300246phttp://doi.org/10.1021/cr300246p .
Nemani S K, Annavarapu R K, Mohammadian B, Raiyan A, Heil J, Haque M A, Abdelaal A, Sojoudi H. Adv Mater Interfaces , 2018 . 5 ( 24 ): 1801247 DOI:10.1002/admi.201801247http://doi.org/10.1002/admi.201801247 .
Liang Fuxin(梁福鑫), Yang Zhenzhong(杨振忠). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 883 - 892 . DOI:10.11777/j.issn1000-3304.2017.17012http://doi.org/10.11777/j.issn1000-3304.2017.17012 .
Fu Y M, Zeng D D, Chao J, Jin Y Q, Zhang Z, Liu H J, Li D, Ma H W, Huang Q, Gothelf K V, Fan C H. J Am Chem Soc , 2013 . 135 ( 2 ): 696 - 702 . DOI:10.1021/ja3076692http://doi.org/10.1021/ja3076692 .
Eslamian M. Nano-micro Lett , 2017 . 9 ( 1 ): 3 DOI:10.1007/s40820-016-0106-4http://doi.org/10.1007/s40820-016-0106-4 .
Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z F, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Adv Mater , 2015 . 27 ( 45 ): 7372 - 7378 . DOI:10.1002/adma.201503648http://doi.org/10.1002/adma.201503648 .
McDonagh A M, Zareie H M, Ford M J, Barton C S, Ginic-Markovic M, Matisons J G. J Am Chem Soc , 2007 . 129 ( 12 ): 3533 - 3538 . DOI:10.1021/ja064297yhttp://doi.org/10.1021/ja064297y .
Crudden C M, Horton J H, Ebralidze I I, Zenkina O V, McLean A B, Drevniok B, She Z, Kraatz H, Mosey N J, Seki T, Keske E C, Leake J D, Rousina-Webb A, Wu G. Nat Chem , 2014 . 6 ( 5 ): 409 - 414 . DOI:10.1038/nchem.1891http://doi.org/10.1038/nchem.1891 .
Sun Peiyu(孙培育), Tian Liying(田立颖), Zheng Zhen(郑震), Wang Xinling(王新灵). Acta Polymerica Sinica(高分子学报) , 2009 . ( 8 ): 803 - 808 . DOI:10.3321/j.issn:1000-3304.2009.08.015http://doi.org/10.3321/j.issn:1000-3304.2009.08.015 .
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science , 2007 . 318 ( 5849 ): 426 - 430 . DOI:10.1126/science.1147241http://doi.org/10.1126/science.1147241 .
Ahn B K, Das S, Linstadt R, Kaufman Y, Martinez-Rodriguez N R, Mirshafian R, Kesselman E, Talmon Y, Lipshutz B H, Israelachvili J N, Waite J H. Nat Commun , 2015 . 6 8663 DOI:10.1038/ncomms9663http://doi.org/10.1038/ncomms9663 .
Ejima H, Richardson J J, Liang K, Best J P, Koeverden M P, Such G K, Cui J W, Caruso F. Science , 2013 . 341 ( 6142 ): 154 - 157 . DOI:10.1126/science.1237265http://doi.org/10.1126/science.1237265 .
Sileika T S, Barrett D G, Zhang R, Lau K H A, Messersmith P B. Angew Chem Int Ed , 2013 . 52 ( 41 ): 10766 - 10770 . DOI:10.1002/anie.201304922http://doi.org/10.1002/anie.201304922 .
Lee B P, Messersmith P B, Israelachvili J N, Waite J H. Annu Rev Mater Res , 2011 . 41 99 - 132 . DOI:10.1146/annurev-matsci-062910-100429http://doi.org/10.1146/annurev-matsci-062910-100429 .
Liu Y L, Ai K L, Lu L H. Chem Rev , 2014 . 114 ( 9 ): 5057 - 5115 . DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a .
d’Ischia M, Napolitano A, Ball V, Chen C, Buehler M J. Acc Chem Res , 2014 . 47 ( 12 ): 3541 - 3550 . DOI:10.1021/ar500273yhttp://doi.org/10.1021/ar500273y .
Perikamana S K M, Lee J, Lee Y B, Shin Y M, Lee E J, Mikos A G, Shin H. Biomacromolecules , 2015 . 16 ( 9 ): 2541 - 2555 . DOI:10.1021/acs.biomac.5b00852http://doi.org/10.1021/acs.biomac.5b00852 .
Ye Q, Zhou F, Liu W M. Chem Soc Rev , 2011 . 40 ( 7 ): 4244 - 4258 . DOI:10.1039/c1cs15026jhttp://doi.org/10.1039/c1cs15026j .
Zangmeister R A, Morris T A, Tarlov M J. Langmuir , 2013 . 29 ( 27 ): 8619 - 8628 . DOI:10.1021/la400587jhttp://doi.org/10.1021/la400587j .
Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y. Langmuir , 2011 . 27 ( 23 ): 14180 - 14187 . DOI:10.1021/la202877khttp://doi.org/10.1021/la202877k .
Yang P. Macromol Biosci , 2012 . 12 ( 8 ): 1053 - 1059 . DOI:10.1002/mabi.201200092http://doi.org/10.1002/mabi.201200092 .
Wang D H, Ha Y, Gu J, Li Q, Zhang L L, Yang P. Adv Mater , 2016 . 28 ( 34 ): 7414 - 7423 . DOI:10.1002/adma.201506476http://doi.org/10.1002/adma.201506476 .
Gu J, Su Y J, Liu P, Li P, Yang P. ACS Appl Mater Interfaces , 2017 . 9 ( 1 ): 198 - 210 . DOI:10.1021/acsami.6b13552http://doi.org/10.1021/acsami.6b13552 .
Gao A T, Wu Q, Wang D H, Ha Y, Chen Z J, Yang P. Adv Mater , 2016 . 28 ( 3 ): 579 - 587 . DOI:10.1002/adma.201504769http://doi.org/10.1002/adma.201504769 .
Liu R R, Zhao J, Han Q, Hu X Y, Wang D, Zhang X, Yang P. Adv Mater , 2018 . 30 ( 38 ): 1802851 DOI:10.1002/adma.201802851http://doi.org/10.1002/adma.201802851 .
Qin R R, Liu Y C, F Tao F, Li C, Cao W F, Yang P. Adv Mater , 2019 . 31 1803377 .
Ha Y, Yang J, Tao F, Wu Q, Song Y J, Wang H R, Zhang X, Yang P. Adv Funct Mater , 2018 . 28 ( 4 ): 1704476 DOI:10.1002/adfm.201704476http://doi.org/10.1002/adfm.201704476 .
Yang F C, Tao F, Li C, Gao L X, Yang P. Nat Commun , 2018 . 9 ( 1 ): 5443 DOI:10.1038/s41467-018-07888-2http://doi.org/10.1038/s41467-018-07888-2 .
Xu Y, Liu Y C, Hu X Y, Qin R R, Su H, Li J L, Yang P. Angew Chem Int Ed , 2020 . 132 ( 7 ): 2872 - 2881 . DOI:10.1002/ange.201912848http://doi.org/10.1002/ange.201912848 .
Li C, Lu D Y, Deng J J, Zhang X, Yang P. Adv Mater , 2019 . 31 ( 46 ): 1903973 DOI:10.1002/adma.201903973http://doi.org/10.1002/adma.201903973 .
Sipe J D, Cohen A S. J Struct Biol , 2000 . 130 ( 2-3 ): 88 - 98 . DOI:10.1006/jsbi.2000.4221http://doi.org/10.1006/jsbi.2000.4221 .
Aterman K. Histochemistry , 1976 . 49 ( 2 ): 131 - 143 . DOI:10.1007/BF00495677http://doi.org/10.1007/BF00495677 .
Riek R. Eisenberg D S, Nature , 2016 . 539 ( 7628 ): 227 - 235.
Zhong C, Gurry T, Cheng A A, Downey J, Deng Z T, Stultz, C M, Lu T K. Nat Nanotechnol , 2014 . 19 ( 10 ): 858 - 866.
DeBenedictis E P, Liu J, Keten S. Sci Adv , 2016 . 2 ( 11 ): e1600998 DOI:10.1126/sciadv.1600998http://doi.org/10.1126/sciadv.1600998 .
Barlow D E, Dickinson G H, Orihuela B, Kulp J L, Rittschof D, Wahl K J. Langmuir , 2010 . 26 ( 9 ): 6549 - 6556 . DOI:10.1021/la9041309http://doi.org/10.1021/la9041309 .
Tuomas P J K, Mezzenga R. Adv Mater , 2016 . 28 ( 31 ): 6546 - 6561 . DOI:10.1002/adma.201505961http://doi.org/10.1002/adma.201505961 .
Wei G, Su Z G, Reynolds N, Arosio P, Hamley I, Gazit E, Mezzenga R. Chem Soc Rev , 2017 . 46 ( 15 ): 4661 - 4708 . DOI:10.1039/C6CS00542Jhttp://doi.org/10.1039/C6CS00542J .
Wu Z F, Yang P. Adv Mater Interfaces , 2015 . 2 ( 2 ): 1400401 DOI:10.1002/admi.201400401http://doi.org/10.1002/admi.201400401 .
Li C, Xu L, Zuo Y Y, Yang P. Biomater Sci , 2018 . 6 ( 4 ): 836 - 841 . DOI:10.1039/C8BM00066Bhttp://doi.org/10.1039/C8BM00066B .
Fuss C, Palmaz J C, Sprague E A. J Vas Interv Radiol , 2001 . 12 ( 6 ): 677 - 682 . DOI:10.1016/S1051-0443(07)61437-7http://doi.org/10.1016/S1051-0443(07)61437-7 .
Mosesson M W. J Thromb Haemostasis , 2005 . 3 ( 8 ): 1894 - 1904 . DOI:10.1111/j.1538-7836.2005.01365.xhttp://doi.org/10.1111/j.1538-7836.2005.01365.x .
Horbett T A. J Biomed Mater Res, Part A , 2018 . 106 ( 10 ): 2777 - 2788 . DOI:10.1002/jbm.a.36460http://doi.org/10.1002/jbm.a.36460 .
Adamczyk Z, Bratek-Skicki A, Żeliszewska P, Wasilewska M. Curr Top Med Chem , 2014 . 14 ( 8 ): 702 - 729.
Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, Walther A, MÜller A H E, Bon S A F. Langmuir , 2013 . 29 ( 5 ): 1388 - 1394 . DOI:10.1021/la3048642http://doi.org/10.1021/la3048642 .
0
浏览量
63
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构