浏览全部资源
扫码关注微信
1.School of Chemistry and Chemical Engineering,
2. 软物质材料化学与功能制造重庆市重点实验室 重庆 400715
3.华南理工大学机械与汽车工程学院 广州 510641
E-mail: huangjin2015@swu.edu.cn; huangjin@iccas.ac.cn Jin Huang, E-mail: huangjin2015@swu.edu.cn; huangjin@iccas.ac.cn
纸质出版日期:2020-8,
网络出版日期:2020-6-24,
收稿日期:2020-3-4,
修回日期:2020-4-23,
扫 描 看 全 文
符雪娇, 岳军锋, 罗列红, 刘思源, 张水洞, 甘霖, 黄进. 纤维素纳米晶基阻燃剂成炭对聚丁二酸丁二醇酯火安全行为研究[J]. 高分子学报, 2020,51(8):911-920.
Xue-jiao Fu, Jun-feng Yue, Lie-hong Luo, Si-yuan Liu, Shui-dong Zhang, Lin Gan, Jin Huang. Combustion Carbonization of Cellulose Nanocrystal-based Flame Retardant to Enhance Fire-safety Behaviors of Poly(butylene succinate)[J]. Acta Polymerica Sinica, 2020,51(8):911-920.
符雪娇, 岳军锋, 罗列红, 刘思源, 张水洞, 甘霖, 黄进. 纤维素纳米晶基阻燃剂成炭对聚丁二酸丁二醇酯火安全行为研究[J]. 高分子学报, 2020,51(8):911-920. DOI: 10.11777/j.issn1000-3304.2020.20054.
Xue-jiao Fu, Jun-feng Yue, Lie-hong Luo, Si-yuan Liu, Shui-dong Zhang, Lin Gan, Jin Huang. Combustion Carbonization of Cellulose Nanocrystal-based Flame Retardant to Enhance Fire-safety Behaviors of Poly(butylene succinate)[J]. Acta Polymerica Sinica, 2020,51(8):911-920. DOI: 10.11777/j.issn1000-3304.2020.20054.
基于常态燃烧成炭策略,期望纤维素纳米晶(CNC)的高度结晶结构利于转化成炭,设计引入具有稳定碳骨架的石墨烯、能捕捉自由基的含磷化合物及具有脱氢催化成炭功能的固体酸金属离子,通过共价结合和络合作用将各组分杂化成一体. 为此,将9
10-二氢-9-氧杂-10-磷杂菲-10-氧化物与氧化石墨烯(GO)反应得到含磷GO (P-GO),进而通过Fe
3+
与P-GO和马来酸酐修饰的CNC (CNC-COOH)的表面羧基的络合作用,制得新型阻燃剂(CNC@P-GO). 与CNC-COOH和P-GO单独在高温空气氛下无残炭相对比,该CNC@P-GO阻燃剂在CNC-COOH和P-GO当量比为2:1时,残炭量可最高达37.6%并呈石墨化连续炭层结构. 应用于生物基聚酯的阻燃,仅5 wt%添加量改性就导致原本无残炭的聚丁二酸丁二醇酯(PBS)的残炭率达到17%,且燃烧热释放峰值及总热释放降幅分别达到71%和66%. 燃烧热急剧降低提高了PBS的火安全,主要归因于CNC@P-GO杂化阻燃剂促进了致密连续的炭层结构的形成. 本研究丰富了基于生物质资源设计高效阻燃剂及提高生物基聚酯火安全的思路.
Based on the strategy of normal combustion carbonizaiton
highly crystalline structure of cellulose nanocrystals (CNCs) is expected to favor a conversion to char. Thus
graphene with stable carbon skeleton
phosphorous compound and solid acid metal ion are specifically introduced to hybridize with CNC as one integration system through covalent bonding and complexation. In this case
phosphorous compound and solid acid metal ion might play the roles of free radicals capturing and dehydrogenation/char-forming catalysis
respectively. Moreover
9
10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide firstly reacted with graphene oxide (GO) to obtain phosphorus-containing GO (P-GO)
while the CNCs were esterificated by maleic anhydride to give the nanoscaled products with carboxyl groups-coverd surface (CNC-COOH); subsequently
a novel flame retardant CNC/P-GO hybrid (CNC@P-GO) was prepared
via
the complexation of Fe
3+
with carboxyl groups on the surface of P-GO and CNC-COOH. Compared with no char residue of individual CNC-COOH or P-GO in air atmosphere under high-temperature alone
the char of the CNC@P-GO hybrid with the equivalent ratio of CNC-COOH to P-GO as 2:1 could reach up to 37.6%
showing a graphitized continuous structure. When this kind of the CNC@P-GO hybrids was applied to promote flame retardant of bio-based polyester
only very low loading-level of 5 wt% could result in 17% char residue rate of CNC@P-GO-filled poly(butylene succinate) (PBS) in contrast to almost no char of neat PBS. At the same time
the peak heat release rate and total heat release dramatically dropped down by 71% and 66%
respectively. The predominant reduction of the combustion heat indicated an enhancement of fire safety
which was mainly attributed to the fact that the CNC@P-GO hybrid as flame retardant resulted in the formation of a dense and continuous carbon layer with high graphitization degree. Overall
this study enriches the ideas on the design of high-efficiency flame retardants derived from biomass resources and the fire-safety enhancement of bio-based polyester.
纤维素纳米晶阻燃剂聚丁二酸丁二醇酯火安全燃烧成炭
Cellulose nanocrystalsFlame retardantsPoly(butylene succinate)Fire-safetyCombustion to char
Roman M. Ind Biotechnol , 2015 . 11 25 - 33 . DOI:10.1089/ind.2014.0024http://doi.org/10.1089/ind.2014.0024 .
Costes L, Laoutid F, Brohez S, Costes L, Laoutid F, Brohez S, Dubois P. Mater Sci Eng R , 2017 . 117 1 - 25 . DOI:10.1016/j.mser.2017.04.001http://doi.org/10.1016/j.mser.2017.04.001 .
Yang H, Yan R, Chen H, Zheng C, Lee D H, Liang D T. Energy Fuels , 2006 . 20 ( 1 ): 388 - 393 . DOI:10.1021/ef0580117http://doi.org/10.1021/ef0580117 .
Mamleev V, Bourbigot S, Yvon J J. Anal Appl Pyrolysis , 2007 . 80 ( 1 ): 151 - 165 . DOI:10.1016/j.jaap.2007.01.013http://doi.org/10.1016/j.jaap.2007.01.013 .
Sacui I A, Nieuwendaal R C, Burnett D J, Stranick S J, Jorfi M, Weder C, Foster E J, Olsson R T, Gilman J W. ACS Appl Mater Interfaces , 2014 . 6 6127 - 6138 . DOI:10.1021/am500359fhttp://doi.org/10.1021/am500359f .
Habibi Y, Goffin A L, Schiltz N, Duquesne E, Dubois P, Dufresne A. J Mater Chem , 2008 . 18 5002 - 5010 . DOI:10.1039/b809212ehttp://doi.org/10.1039/b809212e .
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem Soc Rev , 2011 . 40 3941 - 3994 . DOI:10.1039/c0cs00108bhttp://doi.org/10.1039/c0cs00108b .
Zhu H L, Shen F, Luo W, Zhu S Z, Dai J Q, Zhou L H, Ji X L. Nano Energy , 2017 . 33 37 - 44 . DOI:10.1016/j.nanoen.2017.01.021http://doi.org/10.1016/j.nanoen.2017.01.021 .
Kocjan A, Schmidt R, Lazar A, Prado-Gonjal J, Kovač J, Logar M. Nanoscale , 2018 . 10 ( 22 ): 10488 - 10497 . DOI:10.1039/C8NR00717Ahttp://doi.org/10.1039/C8NR00717A .
Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L. Nat Nanotechnol , 2015 . 10 ( 3 ): 277 - 283 . DOI:10.1038/nnano.2014.248http://doi.org/10.1038/nnano.2014.248 .
Song N, Jiao D, Ding P, Cui S, Tang S, Shi L Y. J Mater Chem C , 2016 . 4 ( 2 ): 305 - 314 . DOI:10.1039/C5TC02194Dhttp://doi.org/10.1039/C5TC02194D .
Jeon I Y, Shin S H, Choi H J, Yu S Y, Jung S M, Baek J B. Carbon , 2017 . 116 77 - 83 . DOI:10.1016/j.carbon.2017.01.071http://doi.org/10.1016/j.carbon.2017.01.071 .
Ye W J, Li X Y, Zhu H L, Wang X Y, Wang S Q, Wang H H, Sun R C. Chem Eng J , 2016 . 299 45 - 55.
Li Y Y, Zhu H L, Shen F, Wa J Y, Han X G, Dai J Q, Dai H Q, Hu L B. Adv Funct Mater , 2014 . 24 7366 - 7372 . DOI:10.1002/adfm.201402129http://doi.org/10.1002/adfm.201402129 .
Tang S, Qian L, Liu X, Dong Y P. Polym Degrad Stab , 2016 . 133 350 - 357 . DOI:10.1016/j.polymdegradstab.2016.09.014http://doi.org/10.1016/j.polymdegradstab.2016.09.014 .
Liao S H, Liu P L, Hsiao M C, Teng CC, Wang C A, Ger M D. Ind. Eng Chem Res , 2012 . 51 ( 12 ): 4573 - 4581 . DOI:10.1021/ie2026647http://doi.org/10.1021/ie2026647 .
Cao Z H, Zhang Y, Song P A, Cai Y Z, Guo Q, Fang Z P, Peng M. Anal Appl Pyrolysis , 2011 . 92 339 - 346 . DOI:10.1016/j.jaap.2011.07.007http://doi.org/10.1016/j.jaap.2011.07.007 .
Liu S, Fang Z P, Yan H Q, Wang H. RSC Adv , 2016 . 6 5288 - 5295 . DOI:10.1039/C5RA25988Fhttp://doi.org/10.1039/C5RA25988F .
Liu L, Qian M, Song P, Huang G B, Yu Y M, Fu S Y. ACS Sustain Chem Eng , 2016 . 4 ( 4 ): 2422 - 2431 . DOI:10.1021/acssuschemeng.6b00112http://doi.org/10.1021/acssuschemeng.6b00112 .
Zhou Deng(周登), Li Ming(黎明). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 7 ): 671 - 684 . DOI:10.11777/j.issn1000-3304.2019.19014http://doi.org/10.11777/j.issn1000-3304.2019.19014 .
Lin Chen(林晨), Xie Xuming(谢续明). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 2 ): 170 - 178 . DOI:10.11777/j.issn1000-3304.2018.18178http://doi.org/10.11777/j.issn1000-3304.2018.18178 .
Hummers Jr W S, Offeman R E. J Am Chem Soc , 1958 . 80 ( 6 ): 1339 - 1339 . DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Yu H Y, Qin Z Y, Liang B, Liu N, Zhou Z, Chen L. J Mater Chem A , 2013 . 1 ( 12 ): 3938 - 3944 . DOI:10.1039/c3ta01150jhttp://doi.org/10.1039/c3ta01150j .
Zhou L, He H, Li M C, Huang S W, Mei C T, Wu Q L. Ind Crops Prod , 2018 . 112 449 - 459 . DOI:10.1016/j.indcrop.2017.12.044http://doi.org/10.1016/j.indcrop.2017.12.044 .
Leung A C W, Hrapovic S, Lam E, Liu Y L, Male K B, Mahmoud K A, Luong J H T. Small , 2011 . 7 ( 3 ): 302 - 305 . DOI:10.1002/smll.201001715http://doi.org/10.1002/smll.201001715 .
Eom Y, Son S M, Kim Y E, Lee J E, Hwang S H, Chae H G.. Carbon , 2019 . 150 142 - 152 . DOI:10.1016/j.carbon.2019.05.007http://doi.org/10.1016/j.carbon.2019.05.007 .
Luo F B, Wu K, Wang S, Lu M G. Compos Sci Technol , 2017 . 144 100 - 106 . DOI:10.1016/j.compscitech.2017.03.025http://doi.org/10.1016/j.compscitech.2017.03.025 .
Tian Y Q, Huang H W, Wang H H, Xie Y H, Sheng X X, Zhong L, Zhang X Y.. Carbon , 2017 . 117 252 - 262 . DOI:10.1016/j.carbon.2017.02.064http://doi.org/10.1016/j.carbon.2017.02.064 .
Li N, Bediako D K, Hadt R G, Hayes D, Kempa T J, von Cube F, Bell D C, Chen L X, Nocera D C. Proc Natl Acad Sci , 2017 . 114 ( 7 ): 1486 - 1491 . DOI:10.1073/pnas.1620787114http://doi.org/10.1073/pnas.1620787114 .
Feng X M, Wang X, Cai W, Qiu S L, Hu Y, Liew K M. ACS Appl Mater Interfaces , 2016 . 8 ( 38 ): 25552 - 25562 . DOI:10.1021/acsami.6b08373http://doi.org/10.1021/acsami.6b08373 .
Jiang F, Yao Y G, Natarajan B, Yang C P, Gao T T, Xie H, Wang Y L, Xu L S, Chen Y K, Gilman J, Cui L F, Hu L B. Carbon , 2019 . 144 241 - 248 . DOI:10.1016/j.carbon.2018.12.030http://doi.org/10.1016/j.carbon.2018.12.030 .
Wang Q, Undrell J P, Gao Y, Cai, G, Buffet J C, Wilkie C A, O'Hare D. Macromolecules , 2013 . 46 ( 15 ): 6145 - 6150 . DOI:10.1021/ma401133shttp://doi.org/10.1021/ma401133s .
Yang H, Ye L, Gong J, Li M, Jiang Z, Wen X. Mater Chem Front , 2017 . 1 ( 4 ): 716 - 726 . DOI:10.1039/C6QM00172Fhttp://doi.org/10.1039/C6QM00172F .
Zhang Q J, Wang Y C, Bailey C G, Yuen P K K, Parkin J, Yang W, Valles C.. Compos Part B , 2018 . 146 76 - 87 . DOI:10.1016/j.compositesb.2018.03.049http://doi.org/10.1016/j.compositesb.2018.03.049 .
Zhang S D, Liu F, Peng H Q, Peng X F, Wang J S, Jiang S H. Ind Eng Chem Res , 2015 . 54 11944 - 11952 . DOI:10.1021/acs.iecr.5b03266http://doi.org/10.1021/acs.iecr.5b03266 .
Yu Y M, Yu, Song P A, Jin C D, Fu S Y, Zhao L P, Wu Q, Ye J W. Ind Eng Chem Res , 2012 . 51 12367 - 12374 . DOI:10.1021/ie301953xhttp://doi.org/10.1021/ie301953x .
Liu W J, Tian K, Jiang H, Yu H Q. Sci Rep , 2013 . 3 2419 DOI:10.1038/srep02419http://doi.org/10.1038/srep02419 .
Wang X, Song L, Yang H, Lu H D, Hu Y. Ind Eng Chem Res , 2011 . 50 ( 9 ): 5376 - 5383 . DOI:10.1021/ie102566yhttp://doi.org/10.1021/ie102566y .
Marcos M, El Kissi N, Dufresne A. Langmuir , 2016 . 32 ( 39 ): 10093 - 10103 . DOI:10.1021/acs.langmuir.6b03220http://doi.org/10.1021/acs.langmuir.6b03220 .
Jardin J M, Zhang Z, Hu G, Tam K C, Mekonnen T H. Int J Biol Macromol , 2020 . 152 428 - 426 . DOI:10.1016/j.ijbiomac.2020.02.303http://doi.org/10.1016/j.ijbiomac.2020.02.303 .
Wang J S, Liu Y, Zhao H B, Liu J, Wang D Y, Song Y P, Wang Y Z. Polym Degrad Stab , 2009 . 94 625 - 631 . DOI:10.1016/j.polymdegradstab.2009.01.006http://doi.org/10.1016/j.polymdegradstab.2009.01.006 .
Chen J, Lin N, Huang J, Dufresne A. Polym Chem , 2015 . 6 ( 24 ): 4385 - 4395 . DOI:10.1039/C5PY00367Ahttp://doi.org/10.1039/C5PY00367A .
Khoshkava V, Kamal M R. ACS Appl Mater Interfaces , 2014 . 6 8146 - 8157 . DOI:10.1021/am500577ehttp://doi.org/10.1021/am500577e .
0
浏览量
41
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构