浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 上海 201800
2.中国科学院大学 北京 100049
3.上海交通大学化学化工学院 上海 200240
4.中国科学院上海高等研究院 张江国家实验室 上海同步辐射光源 上海 201204
5.上海市计量测试技术研究院 生物计量实验室 上海 201203
[ "刘刚,男,1982年生,博士,上海市计量测试技术研究院教授级高工. 研究方向为生物标准物质、电化学生物传感、高分子聚合物生物纳米材料筛选和应用. 2016年赴美国国家标准化技术研究院(National Institute of Standard and Technology)做访问学者. 先后主持及参与科技部、国家自然科学基金、国家质检总局和上海市20多项科研课题的研究. 以第一完成人身份获得:上海市科技进步奖二等奖和中国分析测试协会科学技术奖二等奖. 获上海市青年科技启明星资助,上海市人才发展资金资助,获评上海市青年拔尖人才,发表论文30余篇,获得授权专利10项. 国内外学术组织兼职:全国生物计量技术委员会委员,全国生化检测标准化技术委员会委员,全国生物物理协会表型组学分会委员" ]
纸质出版日期:2020-7,
网络出版日期:2020-6-3,
收稿日期:2020-3-5,
修回日期:2020-3-25,
扫 描 看 全 文
李浩, 郝亚亚, 王飞, 王丽华, 刘刚. 基于DNA纳米结构的分子间相互作用研究[J]. 高分子学报, 2020,51(7):728-737.
Hao Li, Ya-ya Hao, Fei Wang, Li-hua Wang, Gang Liu. DNA Nanostructures in the Study of Molecular Interactions[J]. Acta Polymerica Sinica, 2020,51(7):728-737.
李浩, 郝亚亚, 王飞, 王丽华, 刘刚. 基于DNA纳米结构的分子间相互作用研究[J]. 高分子学报, 2020,51(7):728-737. DOI: 10.11777/j.issn1000-3304.2020.20055.
Hao Li, Ya-ya Hao, Fei Wang, Li-hua Wang, Gang Liu. DNA Nanostructures in the Study of Molecular Interactions[J]. Acta Polymerica Sinica, 2020,51(7):728-737. DOI: 10.11777/j.issn1000-3304.2020.20055.
研究生物分子间的相互作用是研究生命本质过程中必不可少的环节. 近年来,DNA纳米技术在分子间相互作用的研究中发挥了重要作用,取得了一系列进展. DNA纳米结构具有高度的可编程性和可寻址性,可以利用这些性质采取不同的方式将待测体系修饰在DNA纳米结构上,而且可以精确控制分子的排布、种类、数目等,因此可以作为研究分子间相互作用的模板. 在此基础上结合单分子技术,如单分子荧光成像(SMF)、原子力显微术等(AFM),可以实现对单个分子的行为观测. 本文首先简述了DNA纳米结构作为研究平台的构建,然后对DNA纳米结构在研究分子间相互作用中的应用进行了阐述,包括用作锚定平台、提供具有一定机械性能的支架以及提供纳米级的微环境,最后对DNA纳米技术的发展进行了总结与展望.
Exploring molecular interaction mechanisms is vital for a better understanding of life activities. In recent years
with the development of DNA nanotechnology
researchers have been using DNA nanostructures to study molecular interactions. Numerous progresses have been made on molecular interaction mechanisms using DNA nanostructures. With high programmability and addressability of DNA nanostructures
the system to be observed could be located on DNA nanostructures through different strategies such as DNA hybridization and covalent interactions. The spatial arrangement
molecule type
and the number of target molecules can be precisely controlled. Thus
DNA nanostructures offer an excellent template for observing molecular interactions. With the designability and high rigidity
DNA nanostructures could be utilized as frames with certain mechanical properties. By spatially organizing anchored molecules
nanoscale microenvironment could also be regulated on the platform of DNA nanostructures. In addition
DNA nanotechnology could be combined with various single-molecule techniques such as fluorescent imaging
atomic force microscopy
allowing single-molecule study with DNA nanostructures. In this review
we provide an overview of the construction of observing platforms with DNA nanostructures and the applications of DNA nanostructures in the study of molecular interactions. Finally
we summarize and prospect the development of DNA nanotechnology in this field.
DNA纳米技术分子间相互作用单分子成像
DNA nanotechnologyMolecular interactionsSingle-molecule imaging
Cornish P V, Ha T. ACS Chem Biol , 2007 . 2 ( 1 ): 53 - 61 . DOI:10.1021/cb600342ahttp://doi.org/10.1021/cb600342a .
Sako Y, Yanagida T. Nat Rev Mol Cell Bio , 2003 . SS1 - SS5 . DOI:10.1038/nrm1193http://doi.org/10.1038/nrm1193 .
Xie X S, Dunn R C. Science , 1994 . 265 ( 5170 ): 361 - 364 . DOI:10.1126/science.265.5170.361http://doi.org/10.1126/science.265.5170.361 .
Rajendran A, Endo M, Sugiyama H. Angew Chem Int Ed , 2012 . 51 ( 4 ): 874 - 890 . DOI:10.1002/anie.201102113http://doi.org/10.1002/anie.201102113 .
Weiss S. Science , 1999 . 283 ( 5408 ): 1676 - 1683 . DOI:10.1126/science.283.5408.1676http://doi.org/10.1126/science.283.5408.1676 .
Zhuang X, Rief M. Curr Opin Struct Biol , 2003 . 13 ( 1 ): 88 - 97 . DOI:10.1016/S0959-440X(03)00011-3http://doi.org/10.1016/S0959-440X(03)00011-3 .
Shashkova S, Leake M C. Biosci Rep , 2017 . 37 ( 4 ): BSR20170031 DOI:10.1042/BSR20170031Articlehistoryhttp://doi.org/10.1042/BSR20170031Articlehistory .
Roy R, Hohng S, Ha T. Nat Methods , 2008 . 5 ( 6 ): 507 - 516 . DOI:10.1038/nmeth.1208http://doi.org/10.1038/nmeth.1208 .
Santos N C, Castanho M A. Biophys Chem , 2004 . 107 ( 2 ): 133 - 149 . DOI:10.1016/j.bpc.2003.09.001http://doi.org/10.1016/j.bpc.2003.09.001 .
He Y F, Lu M L, Cao J, Lu H P. ACS Nano , 2012 . 6 ( 2 ): 1221 - 1229 . DOI:10.1021/nn2038669http://doi.org/10.1021/nn2038669 .
Ludwig M, Rief M, Schmidt L, Li H, Oesterhelt F, Gautel M, Gaub H E. Appl Phys A: Mater Sci Process , 1999 . 68 ( 2 ): 173 - 176 . DOI:10.1007/s003390050873http://doi.org/10.1007/s003390050873 .
Seeman N C. J Theor Biol , 1982 . 99 ( 2 ): 237 - 247 . DOI:10.1016/0022-5193(82)90002-9http://doi.org/10.1016/0022-5193(82)90002-9 .
Kallenbach N R, Ma R I, Seeman N C. Nature , 1983 . 305 ( 5937 ): 829 - 831 . DOI:10.1038/305829a0http://doi.org/10.1038/305829a0 .
Seeman N C, Sleiman H F. Nat Rev Mater , 2017 . 3 ( 1 ): 1 - 23.
Goodman R P, Berry R M, Turberfield A J. Chem Commun , 2004 . ( 12 ): 1372 - 1373 . DOI:10.1039/b402293ahttp://doi.org/10.1039/b402293a .
Goodman R P, Heilemann M, Doose S, Erben C M, Kapanidis A N, Turberfield A J. Nat Nanotechnol , 2008 . 3 ( 2 ): 93 - 96 . DOI:10.1038/nnano.2008.3http://doi.org/10.1038/nnano.2008.3 .
Castro C E, Kilchherr F, Kim D N, Shiao E L, Wauer T, Wortmann P, Bathe M, Dietz H. Nat Methods , 2011 . 8 (3 ): 221 - 229 . DOI:10.1038/nmeth.1570http://doi.org/10.1038/nmeth.1570 .
Zhang Y Y, Wang C, Dong Y C, Wang D M, Cao T Y, Wang S, Liu D S. Adv Funct Mater , 2019 . 29 ( 22 ): 1809097 DOI:10.1002/adfm.201809097http://doi.org/10.1002/adfm.201809097 .
Lin C, Liu Y, Rinker S, Yan H. ChemPhysChem , 2006 . 7 ( 8 ): 1641 - 1647 . DOI:10.1002/cphc.200600260http://doi.org/10.1002/cphc.200600260 .
Fu T J, Seeman N C. Biochemistry , 1993 . 32 ( 13 ): 3211 - 3220 . DOI:10.1021/bi00064a003http://doi.org/10.1021/bi00064a003 .
LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C. J Am Chem Soc , 2000 . 122 ( 9 ): 1848 - 1860 . DOI:10.1021/ja993393ehttp://doi.org/10.1021/ja993393e .
Park S H, Barish R, Li H Y, Reif J H, Finkelstein G, Yan H, LaBean T H. Nano Lett , 2005 . 5 ( 4 ): 693 - 696 . DOI:10.1021/nl050108ihttp://doi.org/10.1021/nl050108i .
Rothemund P W K. Nature , 2006 . 440 ( 7082 ): 297 - 302 . DOI:10.1038/nature04586http://doi.org/10.1038/nature04586 .
Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature , 2009 . 459 ( 7245 ): 414 - 418 . DOI:10.1038/nature08016http://doi.org/10.1038/nature08016 .
Wei B, Dai M, Yin P. Nature , 2012 . 485 ( 7400 ): 623 - 626 . DOI:10.1038/nature11075http://doi.org/10.1038/nature11075 .
Ke Y, Ong L L, Shih W M, Yin P. Science , 2012 . 338 ( 6111 ): 1177 - 1183 . DOI:10.1126/science.1227268http://doi.org/10.1126/science.1227268 .
Erben C M, Goodman R P, Turberfield A J. Angew Chem Int Ed , 2006 . 45 ( 44 ): 7414 - 7417 . DOI:10.1002/anie.200603392http://doi.org/10.1002/anie.200603392 .
Yang Y, Wang J, Shigematsu H, Xu W, Shih W M, Rothman J E, Lin C. Nat Chem , 2016 . 8 ( 5 ): 476 - 483 . DOI:10.1038/nchem.2472http://doi.org/10.1038/nchem.2472 .
Shen H, Wang Y, Wang J, Li Z, Yuan Q. ACS Appl Mater Interfaces , 2019 . 11 ( 15 ): 13859 - 13873 . DOI:10.1021/acsami.8b06175http://doi.org/10.1021/acsami.8b06175 .
Rosenzweig B A, Ross N T, Tagore D M, Jayawickramarajah J, Saraogi I, Hamilton A D. J Am Chem Soc , 2009 . 131 ( 14 ): 5020 - 5021 . DOI:10.1021/ja809219phttp://doi.org/10.1021/ja809219p .
Sacca B, Meyer R, Erkelenz M, Kiko K, Arndt A, Schroeder H, Rabe K S, Niemeyer C M. Angew Chem Int Ed , 2010 . 49 ( 49 ): 9378 - 9383 . DOI:10.1002/anie.201005931http://doi.org/10.1002/anie.201005931 .
Bian X, Zhang Z, Xiong Q, De Camilli P, Lin C. Nat Chem Biol , 2019 . 15 ( 8 ): 830 - 837 . DOI:10.1038/s41589-019-0325-3http://doi.org/10.1038/s41589-019-0325-3 .
Iwaki M, Wickham S F, Ikezaki K, Yanagida T, Shih W M. Nat Commun , 2016 . 7 13715 DOI:10.1038/ncomms13715http://doi.org/10.1038/ncomms13715 .
Ke G L, Liu M H, Jiang S X, Qi X D, Yang Y R, Wootten S, Zhang F, Zhu Z, Liu Y, Yang C J, Yan H. Angew Chem Int Ed , 2016 . 55 ( 26 ): 7483 - 7486 . DOI:10.1002/anie.201603183http://doi.org/10.1002/anie.201603183 .
Sun L, Gao Y, Xu Y, Chao J, Liu H, Wang L, Li D, Fan C. J Am Chem Soc , 2017 . 139 ( 48 ): 17525 - 17532 . DOI:10.1021/jacs.7b09323http://doi.org/10.1021/jacs.7b09323 .
Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna G P, Tinnefeld P. Nano Lett , 2019 . 19 ( 7 ): 4257 - 4262 . DOI:10.1021/acs.nanolett.9b00172http://doi.org/10.1021/acs.nanolett.9b00172 .
Shaw A, Hoffecker I T, Smyrlaki I, Rosa J, Grevys A, Bratlie D, Sandlie I, Michaelsen T E, Andersen J T, Hogberg B. Nat Nanotechnol , 2019 . 14 ( 2 ): 184 - 190 . DOI:10.1038/s41565-018-0336-3http://doi.org/10.1038/s41565-018-0336-3 .
Li J, Johnson-Buck A, Yang Y R, Shih W M, Yan H, Walter N G. Nat Nanotechnol , 2018 . 13 ( 8 ): 723 - 729 . DOI:10.1038/s41565-018-0130-2http://doi.org/10.1038/s41565-018-0130-2 .
Zhou C, Yang Z, Liu D. J Am Chem Soc , 2012 . 134 ( 3 ): 1416 - 1418 . DOI:10.1021/ja209590uhttp://doi.org/10.1021/ja209590u .
Xin L, Zhou C, Yang Z, Liu D. Small , 2013 . 9 ( 18 ): 3088 - 3091 . DOI:10.1002/smll.201300019http://doi.org/10.1002/smll.201300019 .
Roth E, Glick Azaria A, Girshevitz O, Bitler A, Garini Y. Nano Lett , 2018 . 18 ( 11 ): 6703 - 6709 . DOI:10.1021/acs.nanolett.8b02093http://doi.org/10.1021/acs.nanolett.8b02093 .
Kilchherr F, Wachauf C, Pelz B, Rief M, Zacharias M, Dietz H. Science , 2016 . 353 ( 6304 ): aaf5508 DOI:10.1126/science.aaf5508http://doi.org/10.1126/science.aaf5508 .
Pfitzner E, Wachauf C, Kilchherr F, Pelz B, Shih W M, Rief M, Dietz H. Angew Chem Int Ed , 2013 . 52 ( 30 ): 7766 - 7771 . DOI:10.1002/anie.201302727http://doi.org/10.1002/anie.201302727 .
Hong F, Zhang F, Liu Y, Yan H. Chem Rev , 2017 . 117 ( 20 ): 12584 - 12640 . DOI:10.1021/acs.chemrev.6b00825http://doi.org/10.1021/acs.chemrev.6b00825 .
Raz M H, Hidaka K, Sturla S J, Sugiyama H, Endo M. J Am Chem Soc , 2016 . 138 ( 42 ): 13842 - 13845 . DOI:10.1021/jacs.6b08915http://doi.org/10.1021/jacs.6b08915 .
Funke J J, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. Sci Adv , 2016 . 2 ( 11 ): e1600974 DOI:10.1126/sciadv.1600974http://doi.org/10.1126/sciadv.1600974 .
Kosuri P, Altheimer B D, Dai M, Yin P, Zhuang X. Nature , 2019 . 572 ( 7767 ): 136 - 140 . DOI:10.1038/s41586-019-1397-7http://doi.org/10.1038/s41586-019-1397-7 .
Xia K, Shen J, Li Q, Fan C, Gu H. ACS Nano , 2020 . 14 ( 2 ): 1319 - 1337 . DOI:10.1021/acsnano.9b09163http://doi.org/10.1021/acsnano.9b09163 .
Mao X, Li K, Liu M, Wang X, Zhao T, An B, Cui M, Li Y, Pu J, Li J, Wang L, Lu T K, Fan C, Zhong C. Nat Commun , 2019 . 10 ( 1 ): 1395 DOI:10.1038/s41467-019-09369-6http://doi.org/10.1038/s41467-019-09369-6 .
Franquelim H G, Khmelinskaia A, Sobczak J P, Dietz H, Schwille P. Nat Commun , 2018 . 9 ( 1 ): 811 DOI:10.1038/s41467-018-03198-9http://doi.org/10.1038/s41467-018-03198-9 .
Journot C M A, Ramakrishna V, Wallace M I, Turberfield A J. ACS Nano , 2019 . 13 ( 9 ): 9973 - 9979 . DOI:10.1021/acsnano.8b07734http://doi.org/10.1021/acsnano.8b07734 .
Ketterer P, Ananth A N, Laman Trip D S, Mishra A, Bertosin E, Ganji M, van der Torre J, Onck P, Dietz H, Dekker C. Nat Commun , 2018 . 9 ( 1 ): 902 DOI:10.1038/s41467-018-03313-whttp://doi.org/10.1038/s41467-018-03313-w .
Zhu D, Pei H, Yao G, Wang L, Su S, Chao J, Wang L, Aldalbahi A, Song S, Shi J, Hu J, Fan C, Zuo X. Adv Mater , 2016 . 28 ( 32 ): 6860 - 6865 . DOI:10.1002/adma.201506407http://doi.org/10.1002/adma.201506407 .
Rinker S, Ke Y, Liu Y, Chhabra R, Yan H. Nat Nanotechnol , 2008 . 3 ( 7 ): 418 - 422 . DOI:10.1038/nnano.2008.164http://doi.org/10.1038/nnano.2008.164 .
Xu W, Nathwani B, Lin C, Wang J, Karatekin E, Pincet F, Shih W, Rothman J E. J Am Chem Soc , 2016 . 138 ( 13 ): 4439 - 4447 . DOI:10.1021/jacs.5b13107http://doi.org/10.1021/jacs.5b13107 .
0
浏览量
27
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构