浏览全部资源
扫码关注微信
青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 青岛 266042
E-mail: lindashi88@hotmail.com Xin-yan Shi, E-mail: lindashi88@hotmail.com
纸质出版日期:2020-9-1,
网络出版日期:2020-6-4,
收稿日期:2020-3-6,
修回日期:2020-4-1,
扫 描 看 全 文
林正伟, 陈燕鲁, 赵浩天, 张茂林, 史新妍. 聚降冰片烯/微晶蜡复合材料形状记忆性能的研究[J]. 高分子学报, 2020,51(10):1178-1186.
Zheng-wei Lin, Yan-lu Chen, Hao-tian Zhao, Mao-lin Zhang, Xin-yan Shi. Study on Shape Memory Properties of Polynorbornene/ Microcrystalline Wax Materials[J]. Acta Polymerica Sinica, 2020,51(10):1178-1186.
林正伟, 陈燕鲁, 赵浩天, 张茂林, 史新妍. 聚降冰片烯/微晶蜡复合材料形状记忆性能的研究[J]. 高分子学报, 2020,51(10):1178-1186. DOI: 10.11777/j.issn1000-3304.2020.20058.
Zheng-wei Lin, Yan-lu Chen, Hao-tian Zhao, Mao-lin Zhang, Xin-yan Shi. Study on Shape Memory Properties of Polynorbornene/ Microcrystalline Wax Materials[J]. Acta Polymerica Sinica, 2020,51(10):1178-1186. DOI: 10.11777/j.issn1000-3304.2020.20058.
以聚降冰片烯树脂(PNB)为基体,通过改变微晶蜡(MW)的填充含量制备PNB/MW复合材料,利用偏光显微镜、示差扫描量热仪(DSC)、动态力学分析(DMA)与万能电子拉伸试验机等测试手段,研究PNB/MW两相结构与基本性能,同时采用DMA-Q800测试复合材料的二重形状记忆及可逆塑性形状记忆性能,并与填充同等含量的环保芳烃油(TDAE)的PNB进行对比. 结果表明,微晶蜡可以调节PNB材料的玻璃化转变温度接近于室温,有利于室温下的可逆塑性形状记忆,且其无污染,可以代替TDAE增塑油改善PNB的加工;PNB/MW复合材料物理机械性能良好,200%以上的断裂伸长率提供了较大的形变范围,有利于材料的变形与恢复;微晶蜡较宽的固-液转变可以作为可逆相,使恢复过程温和可控;固态微晶蜡阻碍PNB链段运动,提高可逆塑性的形状固定率,微晶蜡含量越多,固定效果越明显,PNB/MW50展现出优异的二重及可逆塑性形状记忆性能.
Polynorbornene (PNB) is a kind of smart material with excellent shape memory performance. The appearance of PNB is powder
so it can only be processed by adding plasticizing oil. In order to broaden its processing method and avoid environmental pollution caused by aromatic oils containing benzene
microcrystalline wax (MW) can be used as a better choice for plasticizing oil. Therefore
PNB/MW materials were prepared by using PNB as the matrix and adding microcrystalline wax with different contents. The basic properties of PNB/MW materials were studied by Shore D hardness tester
polarizing microscope
differential scanning calorimeter (DSC)
universal electronic tensile testing machine and dynamic mechanical analysis (DMA). The dual-shape memory and reversible plasticity shape memory properties of PNB/MW materials were studied by DMA-Q800. The results showed that the glass transition temperature (
T
g
) of PNB is adjusted to near room temperature by microcrystalline wax
which was beneficial to the reversible plasticity deformation. So MW could replace treated distillate aromatic extract (TDAE) for the processing of PNB because of its non-pollution. The elongation at break of PNB/MW materials was more than 200%
and the tensile strength was high. The high elongation at break was beneficial to the deformation and recovery of the shape memory. In addition
the wide solid-liquid transition of microcrystalline wax also played the role of reversible phase
which made the recovery process controllable. The movement of PNB chain segment was limited by solid microcrystalline wax
which contributed to the fixation process of reversible plasticity shape memory. It was concluded that PNB/MW50 had excellent dual-shape memory and reversible plasticity shape memory performance.
聚降冰片烯微晶蜡可逆塑性形状记忆
PolynorborneneMicrocrystalline waxReversible plasticityShape memory
Meng H, Li G. Polymer , 2013 . 54 ( 9 ): 2199 - 2221 . DOI:10.1016/j.polymer.2013.02.023http://doi.org/10.1016/j.polymer.2013.02.023 .
Wu T, O' Kelly K, Chen B. Eur Polym J, 2014, 53(4): 230 − 237.
Leng J S, Xin L, Liu Y J, Du S Y. Prog Mater Sci , 2011 . 56 ( 7 ): 1077 - 1135 . DOI:10.1016/j.pmatsci.2011.03.001http://doi.org/10.1016/j.pmatsci.2011.03.001 .
Du W N, Jin Y, Lai S Q, Shi L J, Fan W H, Pan J Z. Polymer , 2018 . 158 120 - 129 . DOI:10.1016/j.polymer.2018.10.059http://doi.org/10.1016/j.polymer.2018.10.059 .
Zhang Z X, Wei X, Yang J H, Zhang N, Huang T, Wang Y, Gao X L. Ind Eng Chem Res , 2016 . 55 ( 47 ): 12232 - 12241 . DOI:10.1021/acs.iecr.6b03438http://doi.org/10.1021/acs.iecr.6b03438 .
Ratna D, Karger-Kocsis J. J Mater Sci , 2008 . 43 ( 1 ): 254 - 269 . DOI:10.1007/s10853-007-2176-7http://doi.org/10.1007/s10853-007-2176-7 .
Zare M, Parvin N, Prabhakaran M P, Mohandesi J A, Ramakrishna S. Compos Sci Technol, 2019, 184: 107874 − 107900.
Hu J L, Zhu Y, Huang H H, Lu J. Prog Polym Sci, 2012, 37(12): 1720 − 1763.
Zhang Z X, Wang W Y, Yang J H, Zhang N, Huang T, Wang Y. J Phys Chem C , 2016 . 120 ( 40 ): 22793 - 22802 . DOI:10.1021/acs.jpcc.6b06345http://doi.org/10.1021/acs.jpcc.6b06345 .
Ni X Y, Sun X H. J Appl Polym Sci , 2006 . 100 ( 2 ): 879 - 885 . DOI:10.1002/app.23012http://doi.org/10.1002/app.23012 .
Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F. Polym Bull , 2018 . 75 2181 - 2196 . DOI:10.1007/s00289-017-2144-6http://doi.org/10.1007/s00289-017-2144-6 .
Cavicchi K A, Pantoja M, Cakmak M. J Polym Sci, Part B: Polym Phys , 2016 . 54 1389 - 1396 . DOI:10.1002/polb.24052http://doi.org/10.1002/polb.24052 .
Xiao R, Choi J, Lakhera N, Yakacki Cr M, Frick C P, Nguyen T D. J Mech Phys Solids , 2013 . 61 1612 - 1635 . DOI:10.1016/j.jmps.2013.02.005http://doi.org/10.1016/j.jmps.2013.02.005 .
Lin T F, Tang Z H, Guo B C. ACS Appl Mater Interfaces , 2014 . 6 21060 - 21068 . DOI:10.1021/am505937phttp://doi.org/10.1021/am505937p .
Wang Gang(王刚), Shi Xinyan(史新妍). Chin Polym Bull(高分子通报) , 2016 . ( 6 ): 23 - 30.
Xiao Ya(肖雅), Qu Ming(曲明), Shi Xinyan(史新妍). Acta Polymerica Sinica(高分子学报) , 2018 . ( 3 ): 402 - 409 . DOI:10.11777/j.issn1000-3304.2017.17085http://doi.org/10.11777/j.issn1000-3304.2017.17085 .
Qu M, Ma Y, Li C L, Shi X Y. J Elastom Plast , 2017 . 49 560 - 573 . DOI:10.1177/0095244316676867http://doi.org/10.1177/0095244316676867 .
Zhang Q L, Song S J, Feng J C. J Mater Chem , 2012 . 22 ( 47 ): 24776 - 24782 . DOI:10.1039/c2jm35619hhttp://doi.org/10.1039/c2jm35619h .
Zhang Q L, Feng J C. Sol Energy Mater Sol Cells , 2013 . 117 259 - 266 . DOI:10.1016/j.solmat.2013.06.020http://doi.org/10.1016/j.solmat.2013.06.020 .
Zhang Maolin(张茂林), Ji Xingxing(季行行), Shi Xinyan(史新妍). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 9 ): 949 - 956 . DOI:10.11777/j.issn1000-3304.2019.19050http://doi.org/10.11777/j.issn1000-3304.2019.19050 .
Feldkamp D M, Rousseau I A. Macromol Mater Eng , 2010 . 295 726 - 734 . DOI:10.1002/mame.201000035http://doi.org/10.1002/mame.201000035 .
Gu S L, Sadhan J. Polymers-Basel , 2014 . 6 1008 - 1025 . DOI:10.3390/polym6041008http://doi.org/10.3390/polym6041008 .
0
浏览量
30
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构