浏览全部资源
扫码关注微信
北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 软物质科学与工程中心北京大学化学与分子工程学院 北京 100871
[ "张文彬,男,1981年生,现任北京大学化学与分子工程学院特聘研究员,博士生导师. 2004年和2010年分别获北京大学学士和美国阿克伦大学博士学位,之后先后在阿克伦大学和加州理工做博士后研究. 2013年8月加入北京大学化学学院. 主要研究方向为结合合成高分子和生物高分子的独特基元和设计理念,发展具有不寻常结构和性质的精密结构大分子材料. 获日本化学会杰出讲座奖(2017年)、国家杰出青年科学基金(2019年)等荣誉和人才计划" ]
纸质出版日期:2020-8,
网络出版日期:2020-6-5,
收稿日期:2020-3-13,
修回日期:2020-4-4,
扫 描 看 全 文
杨婷婷, 达晓娣, 张文彬. 拓扑蛋白质的设计与合成[J]. 高分子学报, 2020,51(8):804-816.
Ting-ting Yang, Xiao-Di Da, Wen-Bin Zhang. Design and Biosynthesis of Topological Proteins[J]. Acta Polymerica Sinica, 2020,51(8):804-816.
杨婷婷, 达晓娣, 张文彬. 拓扑蛋白质的设计与合成[J]. 高分子学报, 2020,51(8):804-816. DOI: 10.11777/j.issn1000-3304.2020.20065.
Ting-ting Yang, Xiao-Di Da, Wen-Bin Zhang. Design and Biosynthesis of Topological Proteins[J]. Acta Polymerica Sinica, 2020,51(8):804-816. DOI: 10.11777/j.issn1000-3304.2020.20065.
拓扑蛋白质是一类具有复杂拓扑结构的非线性蛋白质,为抗体工程、工程酶、生物材料等领域提供了崭新的研究对象,具有重要的基础科学意义和应用价值. 本专论从拓扑高分子合成的重大挑战出发,总结了天然拓扑蛋白质的合成策略,详细阐述了如何灵活应用组装和反应协同构建人工拓扑蛋白质,讨论了拓扑蛋白质的表征方法,并提出了该领域进一步发展所面临的挑战和机遇.
Topological proteins are proteins possessing non-linear backbones and nontrivial chemical topology. Since nascent polypeptide chains are strictly linear as defined by the translational mechanism of the cellular machinery
synthesis of topological proteins remains a huge challenge. By folding into various three-dimensional shapes
proteins can gain certain control over the spatial relationship of secondary motifs
however
the diversity of the chemical topology of the backbone remains largely untapped. The discovery of natural topological proteins in the past decades have inspired the researchers to explore the design and synthesis of artificial topological proteins. Meanwhile
the progresses in supramolecular chemistry and topological polymer chemistry have brought in various strategies for the synthesis of topological molecules in general. Among them
the “assembly-reaction” synergy seems to be a generally applicable and powerful one in creating unconventional structures. With genetically encoded entangling protein motifs and genetically encoded peptide-protein reactive pairs
different topological proteins have been prepared
including cyclic proteins
star proteins
branched proteins
tadpole proteins and protein catenanes. While structures and functions are well preserved in most cases
they also exhibit considerable advantages in terms of thermal stability and resistance to chemical denaturation and proteolytic digestion. Herein
begin with the major challenges in the synthesis of topological polymers
we summarize the biosynthesis of topological proteins in nature and the recent efforts to design and construct artificial topological proteins in chemistry. We will discuss the strategies for their synthesis and characterization
as well as the potential functional benefits of topological proteins. Finally
we will present our perspective on the challenges and opportunities of this emerging field.
拓扑蛋白质工程打结蛋白套索索烃组装-反应协同
TopologyProtein engineeringKnot proteinLassoCatenaneAssembly-reaction synergy
Crick F. Nature , 1970 . 227 561 - 563 . DOI:10.1038/227561a0http://doi.org/10.1038/227561a0 .
Alberts B, Johnson A, Lewis J, Morgan D, Raff M C, Roberts K, Walter P, Wilson J H, Hunt T. Molecular Biology of the Cell. 6th ed. New York: Garland Science, Taylor and Francis Group, 2015. 1342
Hudson B, Vinograd J. Nature , 1967 . 216 647 - 652 . DOI:10.1038/216647a0http://doi.org/10.1038/216647a0 .
Bauer W R, Crick F H, White J H. Sci Am , 1980 . 243 118 - 133.
Jeck W R, Sorrentino J A, Wang K, Slevin M K, Burd C E, Liu J Z, Marzluff W F, Sharpless N E. RNA , 2013 . 19 141 - 157 . DOI:10.1261/rna.035667.112http://doi.org/10.1261/rna.035667.112 .
Whitford D. Proteins: Structure and Function. Hoboken, NJ: John Wiley & Sons, 2005. 528
Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Chem Rev , 2001 . 101 3747 - 3792 . DOI:10.1021/cr9901337http://doi.org/10.1021/cr9901337 .
Shimokawa K, Ishihara K, Tezuka Y. Topology of Polymers. Tokyo: Springer, 2019. 85
Frisch H L, Wasserman E. J Am Chem Soc , 1961 . 83 3789 - 3795 . DOI:10.1021/ja01479a015http://doi.org/10.1021/ja01479a015 .
Tu X Y, Liu M Z, Wei H. J Polym Sci, Part A: Polym Chem , 2016 . 54 1447 - 1458 . DOI:10.1002/pola.28051http://doi.org/10.1002/pola.28051 .
McKee M G, Unal S, Wilkes G L, Long T E. Prog Polym Sci , 2005 . 30 507 - 539 . DOI:10.1016/j.progpolymsci.2005.01.009http://doi.org/10.1016/j.progpolymsci.2005.01.009 .
Okumura Y, Ito K. Adv Mater , 2001 . 13 485 - 487 . DOI:10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-Thttp://doi.org/10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T .
Mayumi K, Tezuka M, Bando A, Ito K. Soft Matter , 2012 . 8 8179 - 8183 . DOI:10.1039/c2sm25508ahttp://doi.org/10.1039/c2sm25508a .
Xu L J, Zhang W B. Sci Chin Chem , 2018 . 61 3 - 16 . DOI:10.1007/s11426-017-9155-2http://doi.org/10.1007/s11426-017-9155-2 .
Wang X W, Zhang W B. Trends Biochem Sci , 2018 . 43 806 - 817 . DOI:10.1016/j.tibs.2018.07.001http://doi.org/10.1016/j.tibs.2018.07.001 .
Cascales L, Craik D J. Org Biomol Chem , 2010 . 8 5035 - 5047 . DOI:10.1039/c0ob00139bhttp://doi.org/10.1039/c0ob00139b .
Maksimov M O, Pan S J, James Link A. Nat Prod Rep , 2012 . 29 996 - 1006 . DOI:10.1039/c2np20070hhttp://doi.org/10.1039/c2np20070h .
Faisca P F N. Comput Struct Biotec , 2015 . 13 459 - 468 . DOI:10.1016/j.csbj.2015.08.003http://doi.org/10.1016/j.csbj.2015.08.003 .
Dabrowski-Tumanski P, Gren B, Sulkowska J I. Polymers , 2019 . 11 707 - 723 . DOI:10.3390/polym11040707http://doi.org/10.3390/polym11040707 .
Boutz D R, Cascio D, Whitelegge J, Perry L J, Yeates T O. J Mol Biol , 2007 . 368 1332 - 1344 . DOI:10.1016/j.jmb.2007.02.078http://doi.org/10.1016/j.jmb.2007.02.078 .
Wikoff W R, Liljas L, Duda R L, Tsuruta H, Hendrix R W, Johnson J E. Science , 2000 . 289 2129 - 2133 . DOI:10.1126/science.289.5487.2129http://doi.org/10.1126/science.289.5487.2129 .
Dabrowski-Tumanski P, Sulkowska J I. Proc Natl Acad Sci USA , 2017 . 114 3415 - 3420 . DOI:10.1073/pnas.1615862114http://doi.org/10.1073/pnas.1615862114 .
Dabrowski-Tumanski P, Sulkowska J I. Polymers , 2017 . 9 454 DOI:10.3390/polym9090454http://doi.org/10.3390/polym9090454 .
Bruns C J, Stoddart J F. The Nature of the Mechanical Bond: from Molecules to Machines. Hoboken, NJ: John Wiley & Sons, 2016. 753
Francl M. Nat Chem , 2009 . 1 334 - 335 . DOI:10.1038/nchem.302http://doi.org/10.1038/nchem.302 .
Tezuka Y, Oike H. J Am Chem Soc , 2001 . 123 11570 - 11576 . DOI:10.1021/ja0114409http://doi.org/10.1021/ja0114409 .
Frontiers in Polymer Science and Engineering, Report of a 2016 NSF Workshop. Minneapolis: University of Minnesota, 2017
Guan Z, Cotts P, McCord E, McLain S. Science , 1999 . 283 2059 - 2062 . DOI:10.1126/science.283.5410.2059http://doi.org/10.1126/science.283.5410.2059 .
Bielawski C W, Benitez D, Grubbs R H. Science , 2002 . 297 2041 - 2044 . DOI:10.1126/science.1075401http://doi.org/10.1126/science.1075401 .
Roland C D, Li H, Abboud K A, Wagener K B, Veige A S. Nat Chem , 2016 . 8 791 - 796 . DOI:10.1038/nchem.2516http://doi.org/10.1038/nchem.2516 .
Liu S, Jin Z, Teo Y C, Xia Y. J Am Chem Soc , 2014 . 136 17434 - 17437 . DOI:10.1021/ja5110415http://doi.org/10.1021/ja5110415 .
Kolb H C, Finn M, Sharpless K B. Angew Chem Int Ed , 2001 . 40 2004 - 2021 . DOI:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5http://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 .
Wu P, Feldman A K, Nugent A K, Hawker C J, Scheel A, Voit B, Pyun J, Fréchet J M, Sharpless K B, Fokin V V. Angew Chem Int Ed , 2004 . 43 3928 - 3932 . DOI:10.1002/anie.200454078http://doi.org/10.1002/anie.200454078 .
Aoki D, Uchida S, Takata T. Angew Chem Int Ed , 2015 . 54 6770 - 6774 . DOI:10.1002/anie.201500578http://doi.org/10.1002/anie.201500578 .
Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T. Chem Commum , 2015 . 51 5606 - 5609 . DOI:10.1039/C4CC08982Khttp://doi.org/10.1039/C4CC08982K .
Tezuka Y. Acc Chem Res , 2017 . 50 2661 - 2672 . DOI:10.1021/acs.accounts.7b00338http://doi.org/10.1021/acs.accounts.7b00338 .
Suzuki T, Yamamoto T, Tezuka Y. J Am Chem Soc , 2014 . 136 10148 - 10155 . DOI:10.1021/ja504891xhttp://doi.org/10.1021/ja504891x .
Wu Q, Rauscher P M, Lang X L, Wojtecki R J, de Pablo J J, Hore M J A, Rowan S J. Science , 2017 . 358 1434 - 1439 . DOI:10.1126/science.aap7675http://doi.org/10.1126/science.aap7675 .
Conlan B F, Gillon A D, Craik D J, Anderson M A. Biopolymers , 2010 . 94 573 - 583 . DOI:10.1002/bip.21422http://doi.org/10.1002/bip.21422 .
Koos J D, Link A J. J Am Chem Soc , 2019 . 141 928 - 935 . DOI:10.1021/jacs.8b10724http://doi.org/10.1021/jacs.8b10724 .
Dabrowski-Tumanski P, Rubach P, Goundaroulis D, Dorier J, Sulkowski P, Millett K C, Rawdon E J, Stasiak A, Sulkowska J I. Nucleic Acids Res , 2019 . 47 D367 - D375 . DOI:10.1093/nar/gky1140http://doi.org/10.1093/nar/gky1140 .
Jackson S E, Suma A, Micheletti C. Curr Opin Sturct Biol , 2017 . 42 6 - 14 . DOI:10.1016/j.sbi.2016.10.002http://doi.org/10.1016/j.sbi.2016.10.002 .
Mallam A L, Jackson S E. Nat Chem Biol , 2012 . 8 147 - 153 . DOI:10.1038/nchembio.742http://doi.org/10.1038/nchembio.742 .
Sulkowska J I, Sulkowski P, Szymczak P, Cieplak M. Proc Natl Acad Sci USA , 2008 . 105 19714 - 19719 . DOI:10.1073/pnas.0805468105http://doi.org/10.1073/pnas.0805468105 .
Sivertsson E M, Jackson S E, Itzhaki L S. Sci Rep , 2019 . 9 2421 DOI:10.1038/s41598-018-38173-3http://doi.org/10.1038/s41598-018-38173-3 .
Wagner J R, Brunzelle J S, Forest K T, Vierstra R D. Nature , 2005 . 438 325 - 331 . DOI:10.1038/nature04118http://doi.org/10.1038/nature04118 .
Niemyska W, Dabrowski-Tumanski P, Kadlof M, Haglund E, Sulkowski P, Sulkowska J I. Sci Rep , 2016 . 6 36895 DOI:10.1038/srep36895http://doi.org/10.1038/srep36895 .
Gierut A M, Niemyska W, Dabrowski-Tumanski P, Sulkowski P, Sulkowska J I. Bioinformatics , 2017 . 33 3819 - 3821 . DOI:10.1093/bioinformatics/btx493http://doi.org/10.1093/bioinformatics/btx493 .
Dabrowski-Tumanski P, Niemyska W, Pasznik P, Sulkowska J I. Nucleic Acids Res , 2016 . 44 W383 - W389 . DOI:10.1093/nar/gkw308http://doi.org/10.1093/nar/gkw308 .
Gil-Ramirez G, Leigh D A, Stephens A J. Angew Chem Int Ed , 2015 . 54 6110 - 6150 . DOI:10.1002/anie.201411619http://doi.org/10.1002/anie.201411619 .
Pieters B J, van Eldijk M B, Nolte R J, Mecinović J. Chem Soc Rev , 2016 . 45 24 - 39 . DOI:10.1039/C5CS00157Ahttp://doi.org/10.1039/C5CS00157A .
King N P, Jacobitz A W, Sawaya M R, Goldschmidt L, Yeates T O. Proc Natl Acad Sci USA , 2010 . 107 20732 - 20737 . DOI:10.1073/pnas.1007602107http://doi.org/10.1073/pnas.1007602107 .
Sayre T C, Lee T M, King N P, Yeates T O. Protein Eng Des Sel , 2011 . 24 627 - 630 . DOI:10.1093/protein/gzr024http://doi.org/10.1093/protein/gzr024 .
Zong C, Maksimov M O, Link A J. ACS Chem Biol , 2016 . 11 61 - 68 . DOI:10.1021/acschembio.5b00745http://doi.org/10.1021/acschembio.5b00745 .
Allen C D, Link A J. J Am Chem Soc , 2016 . 138 14214 - 14217 . DOI:10.1021/jacs.6b09454http://doi.org/10.1021/jacs.6b09454 .
Malay A D, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan C S, Kowalczyk A, Piette B, Hochberg G K A, Wu D, Wrobel T P, Fineberg A, Kushwah M S, Kelemen M, Vavpetic P, Pelicon P, Kukura P, Benesch J L P, Iwasaki K, Heddle J G. Nature , 2019 . 569 438 - 442 . DOI:10.1038/s41586-019-1185-4http://doi.org/10.1038/s41586-019-1185-4 .
Muir T W, Sondhi D, Cole P A. Proc Natl Acad Sci USA , 1998 . 95 6705 - 6710 . DOI:10.1073/pnas.95.12.6705http://doi.org/10.1073/pnas.95.12.6705 .
Evans T C, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L X, Benner J, Liu X Q, Xu M Q. J Biol Chem , 2000 . 275 9091 - 9094 . DOI:10.1074/jbc.275.13.9091http://doi.org/10.1074/jbc.275.13.9091 .
Antos J M, Popp M W, Ernst R, Chew G L, Spooner E, Ploegh H L. J Biol Chem , 2009 . 284 16028 - 16036 . DOI:10.1074/jbc.M901752200http://doi.org/10.1074/jbc.M901752200 .
Nguyen G K, Qiu Y, Cao Y, Hemu X, Liu C F, Tam J P. Nat Protoc , 2016 . 11 1977 - 1988 . DOI:10.1038/nprot.2016.118http://doi.org/10.1038/nprot.2016.118 .
Sun F, Zhang W B. Chin Chem Lett , 2017 . 28 2078 - 2084 . DOI:10.1016/j.cclet.2017.08.052http://doi.org/10.1016/j.cclet.2017.08.052 .
Veggiani G, Zakeri B, Howarth M. Trends Biotechnol , 2014 . 32 506 - 512 . DOI:10.1016/j.tibtech.2014.08.001http://doi.org/10.1016/j.tibtech.2014.08.001 .
Reddington S C, Howarth M. Curr Opin Chem Biol , 2015 . 29 94 - 99 . DOI:10.1016/j.cbpa.2015.10.002http://doi.org/10.1016/j.cbpa.2015.10.002 .
Wang X W, Zhang W B. SpyTag-SpyCatcher Chemistry for Protein Bioconjugation In Vitro and Protein Topology Engineering In Vivo. In: Massa S, Devoogdt N, eds. Bioconjugation New York: Humana, 2019. 287 − 300
Fang Jing(方晶), Zhang Wenbin(张文彬). Acta Polymerica Sinica(高分子学报) , 2018 . ( 4 ): 429 - 444 . DOI:10.11777/j.issn1000-3304.2018.18034http://doi.org/10.11777/j.issn1000-3304.2018.18034 .
Zhang W B, Sun F, Tirrell D A, Arnold F H. J Am Chem Soc , 2013 . 135 13988 - 13997 . DOI:10.1021/ja4076452http://doi.org/10.1021/ja4076452 .
Schoene C, Fierer J O, Bennett S P, Howarth M. Angew Chem Int Ed , 2014 . 53 6101 - 6104 . DOI:10.1002/anie.201402519http://doi.org/10.1002/anie.201402519 .
Zakeri B, Howarth M. J Am Chem Soc , 2010 . 132 4526 - 4527 . DOI:10.1021/ja910795ahttp://doi.org/10.1021/ja910795a .
Zakeri B, Fierer J O, Celik E, Chittock E C, Schwarz-Linek U, Moy V T, Howarth M. Proc Natl Acad Sci USA , 2012 . 109 E690 - E697 . DOI:10.1073/pnas.1115485109http://doi.org/10.1073/pnas.1115485109 .
Keeble A H, Banerjee A, Ferla M P, Reddington S C, Anuar I, Howarth M. Angew Chem Int Ed , 2017 . 56 16521 - 16525 . DOI:10.1002/anie.201707623http://doi.org/10.1002/anie.201707623 .
Keeble A H, Turkki P, Stokes S, Khairil Anuar I N A, Rahikainen R, Hytonen V P, Howarth M. Proc Natl Acad Sci USA , 2019 . 116 26523 - 26533 . DOI:10.1073/pnas.1909653116http://doi.org/10.1073/pnas.1909653116 .
Veggiani G, Nakamura T, Brenner M D, Gayet R V, Yan J, Robinson C V, Howarth M. Proc Natl Acad Sci USA , 2016 . 113 1202 - 1207 . DOI:10.1073/pnas.1519214113http://doi.org/10.1073/pnas.1519214113 .
Liu Y, Liu D, Yang W, Wu X L, Lai L, Zhang W B. Chem Sci , 2017 . 8 6577 - 6582 . DOI:10.1039/C7SC02686Bhttp://doi.org/10.1039/C7SC02686B .
Tan L L, Hoon S S, Wong F T. PloS One , 2016 . 11 e0165074 DOI:10.1371/journal.pone.0165074http://doi.org/10.1371/journal.pone.0165074 .
Schoene C, Bennett S P, Howarth M. Sci Rep , 2016 . 6 21151 DOI:10.1038/srep21151http://doi.org/10.1038/srep21151 .
Fierer J O, Veggiani G, Howarth M. Proc Natl Acad Sci USA , 2014 . 111 E1176 - E1181 . DOI:10.1073/pnas.1315776111http://doi.org/10.1073/pnas.1315776111 .
Buldun C M, Jean J X, Bedford M R, Howarth M. J Am Chem Soc , 2018 . 140 3008 - 3018 . DOI:10.1021/jacs.7b13237http://doi.org/10.1021/jacs.7b13237 .
Wu X L, Liu Y, Liu D, Sun F, Zhang W B. J Am Chem Soc , 2018 . 140 17474 - 17483 . DOI:10.1021/jacs.8b08250http://doi.org/10.1021/jacs.8b08250 .
Siegel J S. Science , 2004 . 304 1256 - 1258 . DOI:10.1126/science.1099216http://doi.org/10.1126/science.1099216 .
Blankenship J W, Dawson P E. J Mol Biol , 2003 . 327 537 - 548 . DOI:10.1016/S0022-2836(03)00115-3http://doi.org/10.1016/S0022-2836(03)00115-3 .
Blankenship J W, Dawson P E. Protein Sci , 2007 . 16 1249 - 1256 . DOI:10.1110/ps.062673207http://doi.org/10.1110/ps.062673207 .
Wang X W, Zhang W B. Angew Chem Int Ed , 2016 . 55 3442 - 3446 . DOI:10.1002/anie.201511640http://doi.org/10.1002/anie.201511640 .
Wang X W, Zhang W B. Angew Chem Int Ed , 2017 . 56 13985 - 13989 . DOI:10.1002/anie.201705194http://doi.org/10.1002/anie.201705194 .
Liu D, Wu W H, Liu Y J, Wu X L, Cao Y, Song B, Li X P, Zhang W B. ACS Cent Sci , 2017 . 3 473 - 481 . DOI:10.1021/acscentsci.7b00104http://doi.org/10.1021/acscentsci.7b00104 .
Aucagne V, Hänni K D, Leigh D A, Lusby P J, Walker D B. J Am Chem Soc , 2006 . 128 2186 - 2187 . DOI:10.1021/ja056903fhttp://doi.org/10.1021/ja056903f .
Saito S, Takahashi E, Nakazono K. Org Lett , 2006 . 8 5133 - 5136 . DOI:10.1021/ol062247shttp://doi.org/10.1021/ol062247s .
Da X D, Zhang W B. Angew Chem Int Ed , 2019 . 58 11097 - 11104 . DOI:10.1002/anie.201904943http://doi.org/10.1002/anie.201904943 .
Zhang X J, Wu X L, Liu D, Da X D, Wang X W, Yang S G, Zhang W B. Chin J Chem , 2019 . 37 113 - 118 . DOI:10.1002/cjoc.201800475http://doi.org/10.1002/cjoc.201800475 .
Zhang X J, Wu X L, Wang X W, Liu D, Yang S G, Zhang W B. Bioconjug Chem , 2018 . 29 1622 - 1629 . DOI:10.1021/acs.bioconjchem.8b00131http://doi.org/10.1021/acs.bioconjchem.8b00131 .
Kruve A, Caprice K, Lavendomme R, Wollschlager J M, Schoder S, Schroder H V, Nitschke J R, Cougnon F B L, Schalley C A. Angew Chem Int Ed , 2019 . 58 11324 - 11328 . DOI:10.1002/anie.201904541http://doi.org/10.1002/anie.201904541 .
Kalenius E, Groessl M, Rissanen K. Nat Rev Chem , 2019 . 3 4 - 14 . DOI:10.1038/s41570-018-0062-2http://doi.org/10.1038/s41570-018-0062-2 .
Tezuka Y, Tsuchitani A, Oike H. Macromol Rapid Commun , 2004 . 25 1531 - 1535 . DOI:10.1002/marc.200400223http://doi.org/10.1002/marc.200400223 .
Neuman K C, Nagy A. Nat Methods , 2008 . 5 491 - 505 . DOI:10.1038/nmeth.1218http://doi.org/10.1038/nmeth.1218 .
Bustamante A, Sotelo-Campos J, Guerra D G, Floor M, Wilson C A M, Bustamante C, Baez M. Nat Commun , 2017 . 8 1581 DOI:10.1038/s41467-017-01691-1http://doi.org/10.1038/s41467-017-01691-1 .
Yang Z G, Yang Y, Wang M, Wang T T, Fok H K F, Jiang B J, Xiao W D, Kou S Z, Guo Y S, Yan Y, Xin D, Zhang W B, Sun F. Matter , 2020 . 2 233 - 249 . DOI:10.1016/j.matt.2019.09.013http://doi.org/10.1016/j.matt.2019.09.013 .
0
浏览量
45
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构