浏览全部资源
扫码关注微信
1.清华大学化学系 北京 100084
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室 长春 130022
[ "刘凯,男,1983年生. 2015年博士毕业于荷兰格罗宁根大学,2015 ~ 2017年在荷兰格罗宁根大学和美国哈佛大学从事博士后研究. 2017年任中国科学院长春应用化学研究所研究员,2020年任清华大学化学系长聘副教授,目前研究方向为高性能生物材料的生物合成及高技术应用" ]
纸质出版日期:2020-7,
网络出版日期:2020-5-28,
收稿日期:2020-3-18,
修回日期:2020-3-29,
扫 描 看 全 文
刘凯, 李敬敬, 马俊, 柳柏梅, 马超. 力学功能蛋白生物合成及材料应用[J]. 高分子学报, 2020,51(7):698-709.
Kai Liu, Jing-jing Li, Jun Ma, Bai-mei Liu, Chao Ma. Biological Synthesis of Structural Proteins and Applications[J]. Acta Polymerica Sinica, 2020,51(7):698-709.
刘凯, 李敬敬, 马俊, 柳柏梅, 马超. 力学功能蛋白生物合成及材料应用[J]. 高分子学报, 2020,51(7):698-709. DOI: 10.11777/j.issn1000-3304.2020.20074.
Kai Liu, Jing-jing Li, Jun Ma, Bai-mei Liu, Chao Ma. Biological Synthesis of Structural Proteins and Applications[J]. Acta Polymerica Sinica, 2020,51(7):698-709. DOI: 10.11777/j.issn1000-3304.2020.20074.
源自蛛丝、蚕丝、贻贝胶的生物力学结构蛋白及其材料在高技术领域具有重要的应用前景. 目前人工合成生物力学蛋白面临着蛋白种类和序列较单一、化学作用机制不清楚、结构优化复杂、性能不稳定、量产困难等诸多问题. 因此实现力学功能蛋白的分子理性设计、精准高效合成和性能调控是该领域面临的挑战. 目前合成生物学技术的发展为力学结构蛋白的优化设计、合成以及材料性能提高提供了新的思路和策略. 本专论将集中探讨合成结构性蛋白研究近况、进展和技术突破. 重点展开对基于蛛丝序列和非蛛丝序列的人工蛋白的设计与合成的讨论,并突出它们在构建高强纤维和高强粘合剂材料方面的应用. 最后并对合成蛋白及力学应用领域的发展进行评述和展望.
Structural proteins from nature are fantastic macromolecules. Based on the folded/unfolded structures and supramolecular interactions
the assembled biomaterials exhibit very promising applications in high-tech fields due to their extraordinary mechanical performance. However
present study is focusing on the proteins of spider silk and silkworm which leads to the limited choice for the design and synthesis of artificial proteins. It is also difficult to optimize the structures of artificial proteins due to the incomplete/destroyed functional domains. Moreover
it is challenging for mass production of the proteins when they are expressed in heterologous hosts. Therefore
the realization of rational design of structural proteins
efficient biosynthesis
precise assembly from molecule to bulk materials
and the optimized mechanical performance is still a major challenge. Nowadays
synthetic biological technology as a powerful tool offers new opportunities for the development of artificial proteins and mechanomaterials. In this review
we outline recent progress and challenges in the design and synthesis of artificial proteins based on spidroins and non-spider sequences. We first briefly discuss the structure
composition
mechanical modulation
and application of protein-based fibers. Next
an overview of the synthetic protein-based adhesives is given. Finally
the development of protein-based structural biomaterials is prospected. The achievements in development of structural proteins by synthetic biology certainly will accelerate the protein-based mechanomaterials for translational applications.
结构蛋白合成生物学力学性能纤维黏合剂
Structural proteinsSynthetic biologyMechanical performanceFiberAdhesive
Chang Y C, Jiao Y, Symons H E, Xu J F, Faul C F J, Zhang X. Chem Soc Rev , 2019 . 48 ( 4 ): 989 - 1003 . DOI:10.1039/C8CS00806Jhttp://doi.org/10.1039/C8CS00806J .
Kluge J A, Rabotyagova O, Leisk G G, Kaplan D L. Trends Biotechnol , 2008 . 26 ( 5 ): 244 - 251 . DOI:10.1016/j.tibtech.2008.02.006http://doi.org/10.1016/j.tibtech.2008.02.006 .
Sun J, Su J, Ma C, Gostl R, Herrmann A, Liu K, Zhang H J. Adv Mater , 2019 . 32 ( 6 ): e1906360 DOI:10.1002/adma.201906360http://doi.org/10.1002/adma.201906360 .
Huang W, Ebrahimi D, Dinjaski N, Tarakanova A, Buehler M J, Wong J Y, Kaplan D L. Acc Chem Res , 2017 . 50 ( 4 ): 866 - 876 . DOI:10.1021/acs.accounts.6b00616http://doi.org/10.1021/acs.accounts.6b00616 .
Rising A, Johansson J. Nat Chem Biol , 2015 . 11 ( 5 ): 309 - 315 . DOI:10.1038/nchembio.1789http://doi.org/10.1038/nchembio.1789 .
Hagn F, Eisoldt L, Hardy J G, Vendrely C, Coles M, Scheibel T, Kessler H. Nature , 2010 . 465 ( 7295 ): 239 - 242 . DOI:10.1038/nature08936http://doi.org/10.1038/nature08936 .
Miserez A, Guerette P A. Chem Soc Rev , 2013 . 42 ( 5 ): 1973 - 1995 . DOI:10.1039/C2CS35294Jhttp://doi.org/10.1039/C2CS35294J .
Frydrych M, Greenhalgh A, Vollrath F.. Sci Rep , 2019 . 9 ( 1 ): e15428 DOI:10.1038/s41598-019-51589-9http://doi.org/10.1038/s41598-019-51589-9 .
Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启),Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 973 - 987 . DOI:10.11777/j.issn1000-3304.2019.19109http://doi.org/10.11777/j.issn1000-3304.2019.19109 .
Sun Jing(孙静), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报) , 2018 . ( 1 ): 1 - 8 . DOI:10.11777/j.issn1000-3304.2018.17220http://doi.org/10.11777/j.issn1000-3304.2018.17220 .
Zhang Chong(张冲), Lv Hua(吕华). Acta Polymerica Sinica(高分子学报) , 2018 . ( 1 ): 21 - 31 . DOI:10.11777/j.issn1000-3304.2018.17204http://doi.org/10.11777/j.issn1000-3304.2018.17204 .
Gainza-Cirauqui P, Correia B E. Curr Opin Biotechnol , 2018 . 52 ( 4 ): 145 - 152.
Grunberg R, Serrano L. Nucleic Acids Res , 2010 . 38 ( 8 ): 2663 - 2675 . DOI:10.1093/nar/gkq139http://doi.org/10.1093/nar/gkq139 .
Roberts A D, Finnigan W, Wolde-Michael E, Kelly P, Blaker J J, Hay S, Breitling R, Takano E, Scrutton N S. MRS Commun , 2019 . 9 ( 2 ): 486 - 504 . DOI:10.1557/mrc.2019.35http://doi.org/10.1557/mrc.2019.35 .
Li Y X, Li J J, Sun J, He H N, Li B, Ma C, Liu K, Zhang H J. Angew Chem Int Ed , 2020 . 59 ( 21 ): e202002399 DOI:10.1002/anie.202002399http://doi.org/10.1002/anie.202002399 .
Shen H, Fallas J A, Lynch E, Sheffler W, Parry B, Jannetty N, Decarreau J, Wagenbach M, Vicente J J, Chen J, Wang L, Dowling Q, Oberdorfer G, Stewart L, Wordeman L, de Yoreo J, Jacobs-Wagner C, Kollman J, Baker D. Science , 2018 . 362 ( 6415 ): 705 - 709 . DOI:10.1126/science.aau3775http://doi.org/10.1126/science.aau3775 .
Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen M M, Huang W, Rizzo D J, Li D, Staii C, Pugno N M, Wong J Y, Kaplan D L, Buehler M J. Nat Commun , 2015 . 6 6892 DOI:10.1038/ncomms7892http://doi.org/10.1038/ncomms7892 .
Dou Xueyu(窦雪宇), Wang Xing(王星), Wu Decheng(吴德成). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 5 ): 429 - 441 . DOI:10.11777/j.issn1000-3304.2019.18263http://doi.org/10.11777/j.issn1000-3304.2019.18263 .
Xia X X, Qian Z G, Ki C S, Park Y H, Kaplan D L, Lee S Y. Proc Natl Acad Sci U S A , 2010 . 107 ( 32 ): 14059 - 14063 . DOI:10.1073/pnas.1003366107http://doi.org/10.1073/pnas.1003366107 .
Bowen C H, Dai B, Sargent C J, Bai W, Ladiwala P, Feng H, Huang W, Kaplan D L, Galazka J M, Zhang F. Biomacromolecules , 2018 . 19 ( 9 ): 3853 - 3860 . DOI:10.1021/acs.biomac.8b00980http://doi.org/10.1021/acs.biomac.8b00980 .
Hagn F, Thamm C, Scheibel T, Kessler H. Angew Chem Int Ed , 2011 . 50 ( 1 ): 310 - 313 . DOI:10.1002/anie.201003795http://doi.org/10.1002/anie.201003795 .
Parent L R, Onofrei D, Xu D, Stengel D, Roehling J D, Addison J B, Forman C, Amin S A, Cherry B R, Yarger J L, Gianneschi N C, Holland G P. Proc Natl Acad Sci USA , 2018 . 115 ( 45 ): 11507 - 11512 . DOI:10.1073/pnas.1810203115http://doi.org/10.1073/pnas.1810203115 .
Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T. Adv Mater , 2015 . 27 ( 13 ): 2189 - 2194 . DOI:10.1002/adma.201404234http://doi.org/10.1002/adma.201404234 .
Andersson M, Jia Q, Abella A, Lee X Y, Landreh M, Purhonen P, Hebert H, Tenje M, Robinson C V, Meng Q, Plaza G R, Johansson J, Rising A. Nat Chem Biol , 2017 . 13 ( 3 ): 262 - 264 . DOI:10.1038/nchembio.2269http://doi.org/10.1038/nchembio.2269 .
Xu L, Weatherbee-Martin N, Liu X Q, Rainey J K. Small , 2019 . 15 ( 12 ): e1805294 DOI:10.1002/smll.201805294http://doi.org/10.1002/smll.201805294 .
Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat Mater , 2015 . 14 ( 1 ): 23 - 36 . DOI:10.1038/nmat4089http://doi.org/10.1038/nmat4089 .
Fu J, Guerette P A, Pavesi A, Horbelt N, Lim C T, Harrington M J, Miserez A. Nanoscale , 2017 . 9 ( 35 ): 12908 - 12915 . DOI:10.1039/C7NR02527Khttp://doi.org/10.1039/C7NR02527K .
Su R S, Gill E E, Kim Y, Liu J C. J Mech Behav Biomed Mater , 2019 . 91 ( 3 ): 68 - 75.
Nagapudi K, Brinkman W T, Thomas B S, Park J O, Srinivasarao M, Wright E, Conticello V P, Chaikof E L. Biomaterials , 2005 . 26 ( 23 ): 4695 - 4706 . DOI:10.1016/j.biomaterials.2004.11.027http://doi.org/10.1016/j.biomaterials.2004.11.027 .
Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. ACS Biomater Sci Eng , 2016 . 2 ( 3 ): 349 - 360 . DOI:10.1021/acsbiomaterials.5b00461http://doi.org/10.1021/acsbiomaterials.5b00461 .
Bracalello A, Santopietro V, Vassalli M, Marletta G, Del G R, Bochicchio B, Pepe A. Biomacromolecules , 2011 . 12 ( 8 ): 2957 - 2965 . DOI:10.1021/bm2005388http://doi.org/10.1021/bm2005388 .
He H N, Yang C J, Wang F, Wei Z, Shen J L, Chen D, Fan C H, Zhang H J, Liu K. Angew Chem Int Ed , 2020 . 59 ( 11 ): 4344 - 4348 . DOI:10.1002/anie.201915262http://doi.org/10.1002/anie.201915262 .
Liu K, Pesce D, Ma C, Tuchband M, Shuai M, Chen D, Su J, Liu Q, Gerasimov J Y, Kolbe A, Zajaczkowski W, Pisula W, Müllen K, Clark N A, Herrmann A. Adv Mater , 2015 . 27 ( 15 ): 2459 - 2465 . DOI:10.1002/adma.201405182http://doi.org/10.1002/adma.201405182 .
Ma C, Su J, Li B, Herrmann A, Zhang H J, Liu K. Adv Mater , 2020 . 32 ( 10 ): e1907697 DOI:10.1002/adma.201907697http://doi.org/10.1002/adma.201907697 .
Zhang J R, Sun J, Li B, Yang C J, Shen J L, Wang N, Gu R, Wang D G, Chen D, Hu H G, Fan C H, Zhang H J, Liu K. Small , 2020 . 16 ( 8 ): e1907598 DOI:10.1002/smll.201907598http://doi.org/10.1002/smll.201907598 .
Stewart R J. Appl Microbiol Biotechnol , 2011 . 89 ( 1 ): 27 - 33 . DOI:10.1007/s00253-010-2913-8http://doi.org/10.1007/s00253-010-2913-8 .
Yang B, Ayyadurai N, Yun H, Choi Y S, Hwang B H, Huang J, Lu Q, Zeng H, Cha H J. Angew Chem Int Ed , 2014 . 53 ( 49 ): 13360 - 13364 . DOI:10.1002/anie.201406099http://doi.org/10.1002/anie.201406099 .
Brennan M J, Kilbride B F, Wilker J J, Liu J C. Biomaterials , 2017 . 124 ( 1 ): 116 - 125 . DOI:10.1016/j.biomaterials.2017.01.034http://doi.org/10.1016/j.biomaterials.2017.01.034 .
Brennan M J, Hollingshead S E, Wilker J J, Liu J C. R Soc Open Sci , 2018 . 5 ( 5 ): 171225 DOI:10.1098/rsos.171225http://doi.org/10.1098/rsos.171225 .
Zhong C, Gurry T, Cheng A A, Downey J, Deng Z, Stultz C M, Lu T K. Nat Nanotechnol , 2014 . 9 ( 10 ): 858 - 866 . DOI:10.1038/nnano.2014.199http://doi.org/10.1038/nnano.2014.199 .
Cui M, Wang X, An B, Zhang C, Gui X, Li K, Li Y, Ge P, Zhang J, Liu C, Zhong C. Sci Adv , 2019 . 5 ( 8 ): x3155 DOI:10.1126/sciadv.aax3155http://doi.org/10.1126/sciadv.aax3155 .
Shin M, Shin J Y, Kim K, Yang B, Han J W, Kim N K, Cha H J. J Colloid Interface Sci , 2020 . 563 ( 12 ): 168 - 176.
Annabi N, Zhang Y N, Assmann A, Sani E S, Cheng G, Lassaletta A D, Vegh A, Dehghani B, Ruiz-Esparza G U, Wang X, Gangadharan S, Weiss A S, Khademhosseini A. Sci Transl Med , 2017 . 9 ( 410 ): i7466 DOI:10.1126/scitranslmed.aai7466http://doi.org/10.1126/scitranslmed.aai7466 .
Zhang L, Ma C, Sun J, Shao B Q, Portale G, Chen D, Liu K, Herrmann A. Angew Chem Int Ed , 2018 . 57 ( 23 ): 6878 - 6882 . DOI:10.1002/anie.201803169http://doi.org/10.1002/anie.201803169 .
Li J J, Li B, Sun J, Ma C, Wan S K, Li Y X, Gostl R, Herrmann A, Liu K, Zhang H J. Adv Mater , 2020 . 32 ( 17 ): e2000964 DOI:10.1002/adma.202000964http://doi.org/10.1002/adma.202000964 .
Ma C, Su J, Sun Y, Feng Y, Shen N, Li B, Liang Y, Yang X, Wu H, Zhang H, Herrmann A, Tanzi R E, Liu K, Zhang C. Angew Chem Int Ed , 2019 . 58 ( 51 ): 18876 - 18882 . DOI:10.1002/anie.201912399http://doi.org/10.1002/anie.201912399 .
0
浏览量
32
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构