浏览全部资源
扫码关注微信
华东理工大学 上海市先进聚合物材料重点实验室 材料科学与工程学院 上海 200237
E-mail: zhangls@ecust.edu.cn Liang-shun Zhang E-mail: zhangls@ecust.edu.cn
E-mail: jlin@ecust.edu.cn Jia-ping Lin E-mail: jlin@ecust.edu.cn
纸质出版日期:2020-9-30,
网络出版日期:2020-7-9,
收稿日期:2020-3-20,
修回日期:2020-4-11,
扫 描 看 全 文
李小霞, 谷梦鑫, 张良顺, 林嘉平. 双亲性DNA嵌段共聚物胶束构建超结构的模拟研究[J]. 高分子学报, 2020,51(11):1257-1266.
Xiao-xia Li, Meng-xin Gu, Liang-shun Zhang, Jia-ping Lin. Computational Investigation on the Superstructures of Micelles from Amphiphilic DNA Block Copolymers[J]. Acta Polymerica Sinica, 2020,51(11):1257-1266.
李小霞, 谷梦鑫, 张良顺, 林嘉平. 双亲性DNA嵌段共聚物胶束构建超结构的模拟研究[J]. 高分子学报, 2020,51(11):1257-1266. DOI: 10.11777/j.issn1000-3304.2020.20078.
Xiao-xia Li, Meng-xin Gu, Liang-shun Zhang, Jia-ping Lin. Computational Investigation on the Superstructures of Micelles from Amphiphilic DNA Block Copolymers[J]. Acta Polymerica Sinica, 2020,51(11):1257-1266. DOI: 10.11777/j.issn1000-3304.2020.20078.
构建了双亲性DNA嵌段共聚物的粗粒化模型,采用布朗动力学模拟方法,开展了DNA嵌段共聚物多层次自组装行为的研究. 模拟结果表明,DNA嵌段共聚物首先自组装形成纳米尺度胶束,随后在DNA嵌段杂化的引导下共聚物胶束相互连接形成多种超结构,如网络状、支化状、星型和线型拓扑等. DNA嵌段序列、化学计量比和温度等因素可以显著地改变超结构的拓扑特征. 模拟结果与已有实验发现一致. 模拟结果预测,胶束共组装超结构与胶束配位数和DNA嵌段杂化率等微观量紧密相关.
Amphiphilic DNA block copolymers
which are composed of DNA and polymeric blocks linked by covalent bonds
are regared as novel building units for creating hierarchically self-assembled superstructures at the mesoscales. However
insufficient understanding of the formation mechanisms and the regulation rules of self-assembled superstructures seriously impedes their potential utility in the field of nanomedicines. In this work
we build a coarse-grained model for amphiphilic block copolymers consisting of DNA blocks in selective solution
and propose a stepwise self-assembly strategy of DNA block copolymers on the basis of Brownian dynamics simulations. It is computationally demonstrated that the amphiphilic DNA block copolymers self-assemble into spherical micelles due to the solvophobic effect of polymeric blocks in the first-step of coarse-grained simulations. Driven by the hybridization of complementary DNA blocks
the binary mixtures of nano-sized micelles in the second-step of simulations are programmed to co-assemble into a series of hierarchical superstructures such as network-like
branched-like
star-like and linear topologies. The DNA-programmed superstructures of micelles can be regulated by finely tuning the sequence of DNA blocks
the stoichiometric ratio of binary mixtures of micelles and the reduced temperature of simulation system. The simulation results turn out to be in agreement with the available experimental findings. Furthermore
it is corroborated that the DNA-programmed superstructures of micelles have a close connection with the coordination number of micelles and the hybridization fraction of DNA blocks at the microscopic level.
DNA超结构嵌段共聚物粗粒化模型
DNASuperstructuresBlock copolymersCoarse-grained model
Discher D E, Eisenberg A. Science , 2002 . 297 ( 5583 ): 967 - 973 . DOI:10.1126/science.1074972http://doi.org/10.1126/science.1074972 .
Zhang L F, Yu K, Eisenberg A. Science , 1996 . 272 ( 5269 ): 1777 - 1779 . DOI:10.1126/science.272.5269.1777http://doi.org/10.1126/science.272.5269.1777 .
Liu Xiaoxia(刘晓霞), Jiang Ming(江明). Acta Polymerica Sinica(高分子学报) , 2011 . ( 9 ): 1007 - 1019 . DOI:10.3724/SP.J.1105.2011.11169http://doi.org/10.3724/SP.J.1105.2011.11169 .
Discher B M, Hammer D A, Bates F S, Discher D E. Curr Opin Colloid Interface Sci , 2000 . 5 ( 1-2 ): 125 - 131 . DOI:10.1016/S1359-0294(00)00045-5http://doi.org/10.1016/S1359-0294(00)00045-5 .
Li Z B, Kesselman E, Talmon Y, Hillmyer M A, Lodge T P. Science , 2004 . 306 ( 5693 ): 98 - 101 . DOI:10.1126/science.1103350http://doi.org/10.1126/science.1103350 .
Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Kumacheva E. Science , 2010 . 329 ( 5988 ): 197 - 200 . DOI:10.1126/science.1189457http://doi.org/10.1126/science.1189457 .
Groschel A H, Walther A, Lobling T I, Schacher F H, Schmalz H, Müller A H E. Nature , 2013 . 503 ( 7475 ): 247 - 251 . DOI:10.1038/nature12610http://doi.org/10.1038/nature12610 .
Walther A, Müller A H E. Chem Rev , 2013 . 113 ( 7 ): 5194 - 5261 . DOI:10.1021/cr300089thttp://doi.org/10.1021/cr300089t .
Seeman N C, Sleiman H F. Nat Rev Mater , 2018 . 3 ( 1 ): 1 - 23.
Laramy C R, O’Brien M N, Mirkin C A. Nat Rev Mater , 2019 . 4 ( 3 ): 201 - 224 . DOI:10.1038/s41578-019-0087-2http://doi.org/10.1038/s41578-019-0087-2 .
Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature , 1996 . 382 ( 6592 ): 607 - 609 . DOI:10.1038/382607a0http://doi.org/10.1038/382607a0 .
Park S Y, Lytton-Jean A K R, Lee B, Weigand S, Schatz G C, Mirkin C A. Nature , 2008 . 451 ( 7178 ): 553 - 556 . DOI:10.1038/nature06508http://doi.org/10.1038/nature06508 .
Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science , 2011 . 334 ( 6053 ): 204 - 208 . DOI:10.1126/science.1210493http://doi.org/10.1126/science.1210493 .
Macfarlane R J, O’Brien M N, Petrosko S H, Mirkin C A. Angew Chem Int Ed , 2013 . 52 ( 22 ): 5688 - 5698 . DOI:10.1002/anie.201209336http://doi.org/10.1002/anie.201209336 .
Auyeung E, Li T I N G, Senesi A J, Schmucker A L, Pals B C, Olvera de la Cruz M, Mirkin C A. Nature , 2014 . 505 ( 7481 ): 73 - 77 . DOI:10.1038/nature12739http://doi.org/10.1038/nature12739 .
Gu M X, Ma X D, Zhang L S, Lin J P. J Am Chem Soc , 2019 . 141 ( 41 ): 16408 - 16415 . DOI:10.1021/jacs.9b07919http://doi.org/10.1021/jacs.9b07919 .
Schnitzler T, Herrmann A. Acc Chem Res , 2012 . 45 ( 9 ): 1419 - 1430 . DOI:10.1021/ar200211ahttp://doi.org/10.1021/ar200211a .
Jia F, Li H, Chen R H, Zhang K. Bioconjugate Chem , 2019 . 30 ( 7 ): 1880 - 1888 . DOI:10.1021/acs.bioconjchem.9b00067http://doi.org/10.1021/acs.bioconjchem.9b00067 .
Sun H, Yang L, Thompson M P, Schara S, Cao W, Choi W, Hu Z Y, Zang N Z, Tan W H, Gianneschi N C. Bioconjugate Chem , 2019 . 30 ( 7 ): 1889 - 1904 . DOI:10.1021/acs.bioconjchem.9b00166http://doi.org/10.1021/acs.bioconjchem.9b00166 .
Zhao Zhiyong(赵智勇), Wu Fen(吴芬), Yang Zhongqiang(杨忠强), Liu Dongsheng(刘冬生), Fan Qinghua(范青华). Acta Chimica Sinica(化学学报) , 2013 . 71 ( 4 ): 549 - 554 . DOI:10.6023/A13010087http://doi.org/10.6023/A13010087 .
Li Z, Zhang Y, Fullhart P, Mirkin C A. Nano Lett , 2004 . 4 ( 6 ): 1055 - 1058 . DOI:10.1021/nl049628ohttp://doi.org/10.1021/nl049628o .
Jia F, Lu X G, Tan X Y, Zhang K. Chem Commun , 2015 . 51 ( 37 ): 7843 - 7846 . DOI:10.1039/C5CC01934Fhttp://doi.org/10.1039/C5CC01934F .
Luo Q J, Shi Z, Zhang Y T, Chen X J, Han S Y, Baumgart T, Chenoweth D M, Park S J. J Am Chem Soc , 2016 . 138 ( 32 ): 10157 - 10162 . DOI:10.1021/jacs.6b04076http://doi.org/10.1021/jacs.6b04076 .
Kim C J, Hu X L, Park S J. J Am Chem Soc , 2016 . 138 ( 45 ): 14941 - 14947 . DOI:10.1021/jacs.6b07985http://doi.org/10.1021/jacs.6b07985 .
Kim C J, Jeong E H, Lee H, Park S J. Nanoscale , 2019 . 11 ( 5 ): 2501 - 2509 . DOI:10.1039/C8NR09341Ehttp://doi.org/10.1039/C8NR09341E .
Huang Zihan(黄子涵), Dong Bojun(董伯骏), Chen Pengyu(陈鹏宇), Yang Ye(杨烨), Zhu Guolong(朱国龙), Yan Litang(燕立唐). Acta Polymerica Sinica(高分子学报) , 2016 . ( 8 ): 979 - 991 . DOI:10.11777/j.issn1000-3304.2016.16055http://doi.org/10.11777/j.issn1000-3304.2016.16055 .
Ma Shiying(马世营), Wang Rong(汪蓉). Acta Polymerica Sinica(高分子学报) , 2016 . ( 8 ): 1030 - 1041 . DOI:10.11777/j.issn1000-3304.2016.16082http://doi.org/10.11777/j.issn1000-3304.2016.16082 .
Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报) , 2017 . ( 11 ): 1841 - 1850 . DOI:10.11777/j.issn1000-3304.2017.17031http://doi.org/10.11777/j.issn1000-3304.2017.17031 .
Qian Hujun(钱虎军), Lu Zhongyuan(吕中元). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 1 ): 55 - 65 . DOI:10.11777/j.issn1000-3304.2020.19152http://doi.org/10.11777/j.issn1000-3304.2020.19152 .
Cao Xuguang(曹旭光), Jiang Tao(蒋涛), Wang Liquan(王立权), Zhang Liangshun(张良顺), Lin Jiaping(林嘉平),Cai Chunhua(蔡春华). Acta Polymerica Sinica(高分子学报) , 2015 . ( 4 ): 475 - 483 . DOI:10.11777/j.issn1000-3304.2015.14339http://doi.org/10.11777/j.issn1000-3304.2015.14339 .
Chu Ming(楚明), Zhu Junli(朱峻立), Wang Liquan(王立权), Lin Jiaping(林嘉平), Du Lei(杜磊), Cai Chunhua(蔡春华). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 11 ): 1211 - 1219 . DOI:10.11777/j.issn1000-3304.2019.19076http://doi.org/10.11777/j.issn1000-3304.2019.19076 .
Gu Mengxin(谷梦鑫), Zhang Liangshun(张良顺), Lin Jiaping(林嘉平). Journal of Functional Polymers(功能高分子学报), 2020, (3): 269 − 274
Knorowski C, Burleigh S, Travesset A. Phys Rev Lett , 2011 . 106 ( 21 ): 215501 DOI:10.1103/PhysRevLett.106.215501http://doi.org/10.1103/PhysRevLett.106.215501 .
Knorowski C, Travesset A. Soft Matter , 2012 . 8 ( 48 ): 12053 - 12059 . DOI:10.1039/c2sm26832ahttp://doi.org/10.1039/c2sm26832a .
Knorowski C, Travesset A. J Am Chem Soc , 2014 . 136 ( 2 ): 653 - 659 . DOI:10.1021/ja406241nhttp://doi.org/10.1021/ja406241n .
Ma X D, Zhou Y R, Zhang L S, Lin J P, Tian X H. Nanoscale , 2018 . 10 ( 35 ): 16873 - 16880 . DOI:10.1039/C8NR05310Chttp://doi.org/10.1039/C8NR05310C .
Ma X D, Gu M X, Zhang L S, Lin J P, Tian X H. ACS Nano , 2019 . 13 ( 2 ): 1968 - 1976 . DOI:10.1021/acsnano.8b08431http://doi.org/10.1021/acsnano.8b08431 .
Anderson J A, Lorenz C D, Travesst A. J Comp Phys , 2008 . 227 ( 10 ): 5342 - 5359 . DOI:10.1016/j.jcp.2008.01.047http://doi.org/10.1016/j.jcp.2008.01.047 .
Jin R C, Wu G S, Li Z, Mirkin C A, Schatz G C. J Am Chem Soc , 2003 . 125 ( 6 ): 1643 - 1654 . DOI:10.1021/ja021096vhttp://doi.org/10.1021/ja021096v .
Fong L K, Wang Z W, Schatz G C, Luijten E, Mirkin C A. J Am Chem Soc , 2018 . 140 ( 20 ): 6226 - 6230 . DOI:10.1021/jacs.8b03459http://doi.org/10.1021/jacs.8b03459 .
Yu Q Y, Zhang X N, Hu Y, Zhang Z H, Wang R. ACS Nano , 2016 . 10 ( 8 ): 7485 - 7492 . DOI:10.1021/acsnano.6b02067http://doi.org/10.1021/acsnano.6b02067 .
Lequieu J P, Hinckley D M, de Pablo J J. Soft Matter , 2015 . 11 ( 10 ): 1919 - 1929 . DOI:10.1039/C4SM02573Chttp://doi.org/10.1039/C4SM02573C .
Yu Q Y, Hu J L, Hu Y, Wang R. Soft Matter , 2018 . 14 ( 14 ): 2665 - 2670 . DOI:10.1039/C7SM02456Hhttp://doi.org/10.1039/C7SM02456H .
Li W H, Duan C, Shi A C. ACS Macro Lett , 2017 . 6 ( 11 ): 1257 - 1262 . DOI:10.1021/acsmacrolett.7b00756http://doi.org/10.1021/acsmacrolett.7b00756 .
0
浏览量
28
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构