浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.河南中烟工业有限责任公司技术中心 郑州 450000
3.郑州大学材料科学与工程学院 郑州 450001
4.山东中科恒联生物基材料有限公司 潍坊 261109
E-mail: yuj@iccas.ac.cn
E-mail: jzhang@iccas.ac.cn
纸质出版日期:2020-8,
网络出版日期:2020-7-11,
收稿日期:2020-3-24,
修回日期:2020-4-27,
扫 描 看 全 文
万纪强, 张金明, 郑学晶, 贾锋伟, 余坚, 张军. 用于锂离子电池的阻燃型纤维素基复合气凝胶膜[J]. 高分子学报, 2020,51(8):933-941.
Ji-qiang Wan, Jin-Ming Zhang, Xue-jing Zheng, Feng-wei Jia, Jian Yu, Jun Zhang. Flame-retardant Cellulose Based Composite Aerogel Membranes for Lithium Ion Batteries[J]. Acta Polymerica Sinica, 2020,51(8):933-941.
万纪强, 张金明, 郑学晶, 贾锋伟, 余坚, 张军. 用于锂离子电池的阻燃型纤维素基复合气凝胶膜[J]. 高分子学报, 2020,51(8):933-941. DOI: 10.11777/j.issn1000-3304.2020.20081.
Ji-qiang Wan, Jin-Ming Zhang, Xue-jing Zheng, Feng-wei Jia, Jian Yu, Jun Zhang. Flame-retardant Cellulose Based Composite Aerogel Membranes for Lithium Ion Batteries[J]. Acta Polymerica Sinica, 2020,51(8):933-941. DOI: 10.11777/j.issn1000-3304.2020.20081.
以离子液体为溶剂,制备了纤维素水凝胶,进而通过“溶胶-凝胶”过程在纤维素凝胶中原位生成勃姆石(AlOOH),并经超临界二氧化碳干燥制得了纤维素/AlOOH复合气凝胶膜. 所形成的纳米纤维状AlOOH相互搭接形成了网络结构,使复合气凝胶膜的微观形貌更加致密、孔结构更加均匀. AlOOH的引入赋予了纤维素材料优异的阻燃性能. 相对于高温易软化的商用聚丙烯隔膜,纤维素/AlOOH复合气凝胶膜在150 °C下30 min无尺寸变化,具有更好的高温尺寸稳定性. 纤维素/AlOOH复合气凝胶膜具有优异的电解液亲和性,吸液率为350%,离子电导率为3.1 mS/cm,以纤维素/AlOOH复合气凝胶膜组装的锂电池表现出了更好的电化学稳定性,并且经过100次循环测试后,容量保持率为90.2%,在4 C/4 C的高倍率充放电测试中放电比容量为80.7 mA h g
−1
,均优于商用聚丙烯隔膜. 由于同时具备了优异的耐高温与阻燃性能和良好的电化学性能,这类新型的纤维素基复合气凝胶膜在高性能锂离子电池领域具有潜在的应用.
Cellulose gel is first prepared by ionic liquid dissolution and regeneration
and then
boehmite
an aluminum oxide hydroxide (AOOH)
is incorporated into cellulose gel
via
in situ
“sol-gel” method. After supercritical CO
2
drying
the cellulose/AlOOH composite aerogel membranes (CAAMs) are prepared. Related properties are investigated by Fourier transform infrared spectrometry (FTIR)
X-ray powder diffraction (XRD)
scanning electron microscopy (SEM) with energy-dispersive X-ray spectra (EDS)
transmission electron microscopy (TEM)
dynamic mechanical analysis (DMA)
and microscale combustion calorimeter (MCC)
and ignition tests. And the CAAMs are further characterized in terms of electrochemical stability and electrochemical performance in lithium-ion batteries (LIBs) and are compared to a commercial polypropylene separator membrane (Celgard 2400). The in-situ formed nanofibrous AlOOHs are overlapped with each other
creating a network structure and homogeneously distribution in the membrane
which endows the CAAMs with compact morphology and uniform pore structure with porosity around 83.9% and an average pore size about 23 nm. The results demonstrate that the CAAMs have excellent flame retardancy and show self-extinguishing behaviors
and the peak of heat release rate (PHHR)
the heat release capacity (HRC)
and the total heat release (THR) are significantly reduced. Compared to Celgard 2400 that are easily softened at high temperatures
the CAAMs have almost no dimensional change at 150 °C for 30 min and display excellent thermal stability. The CAAMs have superior affinity for the polar liquid electrolyte and therefore the CAAMs have higher uptake of liquid electrolytes of 350% and higher ionic conductivity of 3.1 mS/cm in contrast with 90% and 0.53 mS/cm for the polypropylene separators. LIBs assembled with the CAAMs show better electrochemical stability at a voltage below 4.7 V versus Li/Li
+
. The capacity retention was 90.2% after 100 times cycling tests and the specific discharge capacity was 80.7 mA h g
−1
at a fast charge/discharge rate of 4 C/4 C
which were better than those of commercial polypropylene separators. To sum up
this novel cellulose based composite aerogel membrane has great potential for the development of highly safe LIBs.
纤维素复合气凝胶膜阻燃锂离子电池
CelluloseComposite aerogel membraneFlame-retardantLithium ion battery
Mauger A, Julien C M. Ionics , 2017 . 23 ( 8 ): 1933 - 1947 . DOI:10.1007/s11581-017-2177-8http://doi.org/10.1007/s11581-017-2177-8 .
Wen J, Yu Y, Chen C. Mater Express , 2012 . 2 ( 3 ): 197 - 212 . DOI:10.1166/mex.2012.1075http://doi.org/10.1166/mex.2012.1075 .
Doughty D H, Roth E P. Electrochem Soc Interface , 2012 . 21 ( 2 ): 37 - 44.
Kim M, Park J H. J Power Sources , 2012 . 212 22 - 27 . DOI:10.1016/j.jpowsour.2012.03.038http://doi.org/10.1016/j.jpowsour.2012.03.038 .
Kang S M, Ryou M H, Choi J W, Lee H. Chem Mater , 2012 . 24 ( 17 ): 3481 - 3485 . DOI:10.1021/cm301967fhttp://doi.org/10.1021/cm301967f .
Jeon H, Yeon D, Lee T, Park J, Ryou M H, Lee Y M. J Power Sources , 2016 . 315 161 - 168 . DOI:10.1016/j.jpowsour.2016.03.037http://doi.org/10.1016/j.jpowsour.2016.03.037 .
Lee Y, Lee H, Lee T, Ryou M H, Lee, Y M. J Power Sources , 2015 . 294 537 - 544 . DOI:10.1016/j.jpowsour.2015.06.106http://doi.org/10.1016/j.jpowsour.2015.06.106 .
Zhu X, Jiang X, Ai X, Yang H, Cao Y. ACS Appl Mater Interfaces , 2015 . 7 ( 43 ): 24119 - 24126 . DOI:10.1021/acsami.5b07230http://doi.org/10.1021/acsami.5b07230 .
Lee T, Lee Y, Ryou M H, Lee Y M. RSC Adv , 2015 . 5 ( 49 ): 39392 - 39398 . DOI:10.1039/C5RA01061Fhttp://doi.org/10.1039/C5RA01061F .
Fang J, Kelarakis A, Lin Y W, Kang C Y, Yang M H, Cheng C L, Wang Y, Giannelis E P, Tsai L D. Phys Chem Chem Phys , 2011 . 13 ( 32 ): 14457 - 14461 . DOI:10.1039/c1cp22017ahttp://doi.org/10.1039/c1cp22017a .
Kim S, Han T, Jeong J, Lee H, Ryou M H, Lee Y M. Electrochim Acta , 2017 . 241 553 - 559 . DOI:10.1016/j.electacta.2017.04.129http://doi.org/10.1016/j.electacta.2017.04.129 .
Kim J Y, Lee Y, Lim D Y. Electrochim Acta , 2009 . 54 ( 14 ): 3714 - 3719 . DOI:10.1016/j.electacta.2009.01.055http://doi.org/10.1016/j.electacta.2009.01.055 .
Ko J M, Min B G, Kim D W, Ryu K S, Kim K M, Lee Y G, Chang S H. Electrochim Acta , 2004 . 50 ( 2-3 ): 367 - 370 . DOI:10.1016/j.electacta.2004.01.127http://doi.org/10.1016/j.electacta.2004.01.127 .
Jiang F, Yin L, Yu Q, Zhong C, Zhang J. J Power Sources , 2015 . 279 21 - 27 . DOI:10.1016/j.jpowsour.2014.12.090http://doi.org/10.1016/j.jpowsour.2014.12.090 .
Wang Y, Wang S, Fang J, Ding L X, Wang H. J Membr Sci , 2017 . 537 248 - 254 . DOI:10.1016/j.memsci.2017.05.023http://doi.org/10.1016/j.memsci.2017.05.023 .
Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K. Nano Lett , 2016 . 16 ( 5 ): 2981 - 2987 . DOI:10.1021/acs.nanolett.5b05133http://doi.org/10.1021/acs.nanolett.5b05133 .
Orendorff C J, Lambert T N, Chavez C A, Bencomo M, Fenton K R. Adv Energy Mater , 2013 . 3 ( 3 ): 314 - 320 . DOI:10.1002/aenm.201200292http://doi.org/10.1002/aenm.201200292 .
Zhang J, Kong Q, Liu Z, Pang S, Yue L, Yao J, Wang X, Cui G. Solid State Ionics , 2013 . 245-246 49 - 55 . DOI:10.1016/j.ssi.2013.05.016http://doi.org/10.1016/j.ssi.2013.05.016 .
Wang Q, Song W L, Wang L, Song Y, Shi Q, Fan L Z. Electrochim Acta , 2014 . 132 538 - 544 . DOI:10.1016/j.electacta.2014.04.053http://doi.org/10.1016/j.electacta.2014.04.053 .
Woo J J, Nam S H, Seo S J, Yun S H, Kim W B, Xu T, Moon S H. Electrochem Commun , 2013 . 35 68 - 71 . DOI:10.1016/j.elecom.2013.08.005http://doi.org/10.1016/j.elecom.2013.08.005 .
Lee J Y, Shin S H, Moon S H. Korean J Chem Eng , 2016 . 33 ( 1 ): 285 - 289 . DOI:10.1007/s11814-015-0119-6http://doi.org/10.1007/s11814-015-0119-6 .
Yeon D, Lee Y, Ryou M H, Lee Y M. Electrochim Acta , 2015 . 157 282 - 289 . DOI:10.1016/j.electacta.2015.01.078http://doi.org/10.1016/j.electacta.2015.01.078 .
Luo D, Chen M, Xu J, Yin X, Wu J, Chen S, Wang L, Wang H. Compos Sci Technol , 2018 . 157 119 - 125 . DOI:10.1016/j.compscitech.2018.01.023http://doi.org/10.1016/j.compscitech.2018.01.023 .
Kuo P L, Tsao C H, Hsu C H, Chen S T, Hsu H M. J Mem Sci , 2016 . 499 462 - 469 . DOI:10.1016/j.memsci.2015.11.007http://doi.org/10.1016/j.memsci.2015.11.007 .
Zhai Y, Xiao K, Yu J, Yang J, Ding B. J Mater Chem A , 2015 . 3 ( 19 ): 10551 - 10558 . DOI:10.1039/C5TA00856Ehttp://doi.org/10.1039/C5TA00856E .
Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y. Energy Environ Sci , 2013 . 6 ( 2 ): 618 - 624 . DOI:10.1039/C2EE23564Ahttp://doi.org/10.1039/C2EE23564A .
Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L. Sci Rep , 2014 . 4 3935 DOI:10.1038/srep03935http://doi.org/10.1038/srep03935 .
Wan J, Zhang J, Yu J, Zhang J. ACS Appl Mater Interfaces , 2017 . 9 ( 29 ): 24591 - 24599 . DOI:10.1021/acsami.7b06271http://doi.org/10.1021/acsami.7b06271 .
Zhang H, Wu J, Zhang J, He J. Macromolecules , 2005 . 38 ( 20 ): 8272 - 8277 . DOI:10.1021/ma0505676http://doi.org/10.1021/ma0505676 .
Mi Q, Ma S, Yu J, He J, Zhang J. ACS Sustain Chem Eng , 2016 . 4 ( 3 ): 656 - 660 . DOI:10.1021/acssuschemeng.5b01079http://doi.org/10.1021/acssuschemeng.5b01079 .
Yuan B, Zhang J, Yu J, Song R, Mi Q, He J, Zhang J. Sci China Chem , 2016 . 59 ( 10 ): 1335 - 1341 . DOI:10.1007/s11426-016-0188-0http://doi.org/10.1007/s11426-016-0188-0 .
Baumann T F, Gash A E, Chinn S C, Sawvel A M, Maxwell R S, Satcher J H. Chem Mater , 2005 . 17 ( 2 ): 395 - 401 . DOI:10.1021/cm048800mhttp://doi.org/10.1021/cm048800m .
Zhang Jinming(张金明), Wu Jin(武进), Yu Jian(余坚), Zhang Xiaocheng(张晓程), Mi Qinyong(米勤勇), Zhang Jun(张军). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1058 - 1072 . DOI:10.11777/j.issn1000-3304.2017.17066http://doi.org/10.11777/j.issn1000-3304.2017.17066 .
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 1068 - 1082 . DOI:10.11777/j.issn1000-3304.2019.19124http://doi.org/10.11777/j.issn1000-3304.2019.19124 .
Su Qiucheng(苏秋成), Chen Peili(陈佩丽), Zhang Shaohong(张少鸿), Li Xinjun(李新军), Ma Longlong(马隆龙). Chinese Journal of Inorganic Chemistry(无机化学学报) , 2012 . 28 ( 11 ): 2280 - 2284.
0
浏览量
72
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构