浏览全部资源
扫码关注微信
1.中国科学技术大学 合肥微尺度物质科学国家研究中心 合肥 230027
2.School of Biomedical Sciences and Engineering, Guangzhou International Campus,
3. 广州市第一人民医院
4. 医学院 广州 510006)
E-mail: lfyan@ustc.edu.cn Li-feng Yan, E-mail: lfyan@ustc.edu.cn
E-mail: mcjwang@scut.edu.cn Jun Wang, E-mail: mcjwang@scut.edu.cn
纸质出版日期:2020-9-30,
网络出版日期:2020-7-3,
收稿日期:2020-4-1,
修回日期:2020-4-30,
扫 描 看 全 文
张厚兵, 田泰宇, 冯琦, 何欣榆, 都小姣, 董华, 熊梦华, 闫立峰, 王均. 微流体技术可控制备可缓释纳米颗粒的微米组装体[J]. 高分子学报, 2020,51(11):1240-1247.
Hou-bing Zhang, Tai-yu Tian, Qi Feng, Xin-yu He, Xiao-jiao Du, Hua Dong, Meng-hua Xiong, Li-feng Yan, Jun Wang. Microfluidic Preparation of Microparticles Capable of Sustained Release of Nanoparticles[J]. Acta Polymerica Sinica, 2020,51(11):1240-1247.
张厚兵, 田泰宇, 冯琦, 何欣榆, 都小姣, 董华, 熊梦华, 闫立峰, 王均. 微流体技术可控制备可缓释纳米颗粒的微米组装体[J]. 高分子学报, 2020,51(11):1240-1247. DOI: 10.11777/j.issn1000-3304.2020.20090.
Hou-bing Zhang, Tai-yu Tian, Qi Feng, Xin-yu He, Xiao-jiao Du, Hua Dong, Meng-hua Xiong, Li-feng Yan, Jun Wang. Microfluidic Preparation of Microparticles Capable of Sustained Release of Nanoparticles[J]. Acta Polymerica Sinica, 2020,51(11):1240-1247. DOI: 10.11777/j.issn1000-3304.2020.20090.
作为药物递送载体,可缓释纳米颗粒的微米组装体具有可在局部滞留、缓释纳米颗粒从而促进药物组织渗透和细胞摄取等优点. 本研究利用微流体技术,发展了一类尺寸可控、可缓释纳米颗粒的微米组装体. 通过3-甲基马来酸酐-2-丙酸酯-聚己内酯(PCL-CDM)与聚酰胺-胺树枝状高分子(PAMAM)反应,获得可降解酰胺键桥连的两亲性高分子PCL-Dlinkm-PAMAM,通过控制二者投料比制备得到了接枝不同数量PCL的两亲性高分子(PCL-Dlinkm)
n
-PAMAM (
n
= 1 ~ 5). 利用微流体技术将(PCL-Dlinkm)
n
-PAMAM制备成微米组装体imCluster. imCluster主要通过PCL疏水相互作用组装形成,通过调控微流体水相和油相的流速,可实现尺寸从14 ~ 400 μm的精确控制. 使用接枝不同数量PCL的高分子(PCL-Dlinkm)
n
-PAMAM (
n
= 1 ~ 5)制备imCluster,当
n
= 1或2时,高分子组装形成形状不规则的微米级碎片;当
n
≥ 3时,高分子可组装形成稳定的球形imCluster. 当可降解酰胺键Dlinkm断裂后,PAMAM纳米颗粒可逐渐从imCluster释放.
Microparticles that are capable of sustained release of nanoparticles have been widely used as drug delivery carriers for pulmonary delivery
oral delivery and intratumoral delivery
with the advantages of local retention and sustained release of nanoparticles to promote tissue penetration and cellular uptake of drugs. Herein
a strategy to prepare microparticles capable of sustainably releasing nanoparticles by droplet-based microfluidic approach was reported. Biodegradable amphiphilic polymers PCL-Dlinkm-PAMAMs were first synthesized through the reaction of 2-propionic-3-methylmaleic anhydride (CDM) modified poly(
ε
-caprolactone) (PCL) and poly(amidoamine) dendrimer (PAMAM)
generating labile amide bonds. By tuning the feed ratio
a series of amphiphilic polymers with different PCL conjugates (PCL-Dlinkm)
n
-PAMAM (
n
= 1 − 5) were synthesized. With droplet-based microfluidic approach
these polymers were assembled into microparticles by the hydrophobic interaction of PCL segments. The size of microparticles was well-controlled by adjusting the ratio of flow rates of continuous phase and dispersed phase. It was found that regularly spherical microparticles (imCluster) were formed only when more than two PCL segments were conjugated on the amphiphilic polymer. These imCluster could sustainably release PAMAM nanoparticles after the cleavage of amide bonds in the aqueous solution. This study developed a class of microparticles with controlled size and capability of sustained release of nanoparticles.
纳米颗粒缓释微米组装体微流体技术可控制备可降解高分子
Nanoparticle releaseMicroparticlesMicrofluidicsControlled preparationBiodegradable polymer
Edwards D A, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew M L, Mintzes J, Deaver D, Lotan N, Langer R. Science , 1997 . 276 ( 5320 ): 1868 - 1872 . DOI:10.1126/science.276.5320.1868http://doi.org/10.1126/science.276.5320.1868 .
Li K W, Dang W, Tyler B M, Troiano G, Tihan T, Brem H, Walter K A. Clin Cancer Res , 2003 . 9 ( 9 ): 3441 - 3447.
Ye M, Kim S, Park K. J Control Release , 2010 . 146 ( 2 ): 241 - 260 . DOI:10.1016/j.jconrel.2010.05.011http://doi.org/10.1016/j.jconrel.2010.05.011 .
Wolinsky J B, Colson Y L, Grinstaff M W. J Control Release , 2012 . 159 ( 1 ): 14 - 26 . DOI:10.1016/j.jconrel.2011.11.031http://doi.org/10.1016/j.jconrel.2011.11.031 .
Bale S, Khurana A, Reddy A S, Singh M, Godugu C. Crit Rev Ther Drug Carrier Syst , 2016 . 33 ( 4 ): 309 - 361 . DOI:10.1615/CritRevTherDrugCarrierSyst.2016015798http://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015798 .
Anselmo A C, Mitragotri S. J Control Release , 2014 . 190 15 - 28 . DOI:10.1016/j.jconrel.2014.03.053http://doi.org/10.1016/j.jconrel.2014.03.053 .
Mathiowitz E, Jacob J S, Jong Y S, Carino G P, Chickering D E, Chaturvedi P, Santos C A, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C. Nature , 1997 . 386 ( 6623 ): 410 - 414 . DOI:10.1038/386410a0http://doi.org/10.1038/386410a0 .
Conde J, Oliva N, Atilano M, Song H S, Artzi N. Nat Mater , 2016 . 15 ( 3 ): 353 - 363 . DOI:10.1038/nmat4497http://doi.org/10.1038/nmat4497 .
Tang K, Zhang Y, Zhang H F, Xu P W, Liu J, Ma J W, Lv M, Li D P, Katirai F, Shen G X, Zhang G M, Feng Z H, Ye D Y, Huang B. Nat Commun , 2012 . 3 ( 1 ): 1282 DOI:10.1038/ncomms2282http://doi.org/10.1038/ncomms2282 .
Zheng Xixi(郑西西), Lin Hui(林辉), Wang Liqun(王利群). Acta Polymerica Sinica(高分子学报) , 2017 . ( 11 ): 1789 - 1795 . DOI:10.11777/j.issn1000-3304.2017.17019http://doi.org/10.11777/j.issn1000-3304.2017.17019 .
Kim I, Byeon H J, Kim T H, Lee E S, Oh K T, Shin B S, Lee K C, Youn Y S. Biomaterials , 2013 . 34 ( 27 ): 6444 - 6453 . DOI:10.1016/j.biomaterials.2013.05.018http://doi.org/10.1016/j.biomaterials.2013.05.018 .
Rahimian S, Fransen M F, Kleinovink J W, Amidi M, Ossendorp F, Hennink W E. Biomaterials , 2015 . 61 33 - 40 . DOI:10.1016/j.biomaterials.2015.04.043http://doi.org/10.1016/j.biomaterials.2015.04.043 .
Tsapis N, Bennett D, Jackson B, Weitz D A, Edwards D A. Proc Natl Acad Sci U S A , 2002 . 99 ( 19 ): 12001 - 12005 . DOI:10.1073/pnas.182233999http://doi.org/10.1073/pnas.182233999 .
Anton, N, Jakhmola A, Vandamme T F. Pharmaceutics , 2012 . 4 ( 1 ): 1 - 25 . DOI:10.3390/pharmaceutics4010001http://doi.org/10.3390/pharmaceutics4010001 .
Choi H S, Ashitate Y, Lee J H, Kim S H, Matsui A, Insin N, Bawendi M G, Semmler-Behnke M, Frangioni J V, Tsuda A. Nat Biotechnol , 2010 . 28 ( 12 ): 1300 - 1303 . DOI:10.1038/nbt.1696http://doi.org/10.1038/nbt.1696 .
Cao Z T, Chen Z Y, Sun C Y, Li H J, Wang H X, Cheng Q Q, Zuo Z Q, Wang J L, Liu Y Z, Wang Y C, Wang J. Biomaterials , 2016 . 94 9 - 19 . DOI:10.1016/j.biomaterials.2016.04.001http://doi.org/10.1016/j.biomaterials.2016.04.001 .
Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters R C, Kirk J, Eppler B, Klinman D M, Sui Y, Gagnon S, Belyakov I M, Mumper R J, Berzofsky J A. Nat Med , 2012 . 18 ( 8 ): 1291 - 1296 . DOI:10.1038/nm.2866http://doi.org/10.1038/nm.2866 .
Bertoni S, Liu Z H, Correia A, Martins J P, Rahikkala A, Fontana F, Kemell M, Liu D F, Albertini B, Passerini N, Li W, Santos H A. Adv Funct Mater , 2018 . 28 ( 50 ): 1806175 DOI:10.1002/adfm.201806175http://doi.org/10.1002/adfm.201806175 .
Mejías J C, Roy K. J Control Release , 2019 . 316 393 - 403 . DOI:10.1016/j.jconrel.2019.09.012http://doi.org/10.1016/j.jconrel.2019.09.012 .
Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S B. ACS Nano , 2015 . 9 ( 2 ): 1161 - 1174 . DOI:10.1021/nn504573uhttp://doi.org/10.1021/nn504573u .
Xu R, Zhang G D, Mai J H, Deng X Y,Segura - Ibarra V, Wu S H, Shen J L, Liu H R, Hu Z H, Chen L X, Huang Y, Koay E, Huang Y, Liu J, Ensor J E, Blanco E, Liu X W, Ferrari M, Shen H F. Nat Biotechnol , 2016 . 34 ( 4 ): 414 DOI:10.1038/nbt.3506http://doi.org/10.1038/nbt.3506 .
Kakizawa Y, Nishio R, Hirano T, Koshi Y, Nukiwa M, Koiwa M, Michizoe J, Ida N. J Control Release , 2010 . 142 ( 1 ): 8 - 13 . DOI:10.1016/j.jconrel.2009.09.024http://doi.org/10.1016/j.jconrel.2009.09.024 .
Feng Zhiqiang(封志强), Gao Changyou(高长有), Shen Jiacong(沈家骢). Acta Polymerica Sinica(高分子学报) , 2008 . (8) 823 - 827 . DOI:10.3321/j.issn:1000-3304.2008.08.015http://doi.org/10.3321/j.issn:1000-3304.2008.08.015 .
Xu Q B, Hashimoto M, Dang T T, Hoare T, Kohane D S, Whitesides G M, Langer R, Anderson D G. Small , 2009 . 5 ( 13 ): 1575 - 1581 . DOI:10.1002/smll.200801855http://doi.org/10.1002/smll.200801855 .
Miao Shifeng(缪世锋), Yu Jinpeng(余金鹏), Guan Yixin(关怡新), Yao Shanjing(姚善泾). Acta Polymerica Sinica(高分子学报) , 2012 . ( 2 ): 154 - 159.
Whitesides G M. Nature , 2006 . 442 ( 7101 ): 368 - 373 . DOI:10.1038/nature05058http://doi.org/10.1038/nature05058 .
Valencia P M, Farokhzad O C, Karnik R, Langer R. Nat Nanotechnol , 2012 . 7 ( 10 ): 623 - 629 . DOI:10.1038/nnano.2012.168http://doi.org/10.1038/nnano.2012.168 .
Zhang H B, Liu D F, Shahbazi MA, Mäkilä E, Herranz - Blanco B, Salonen J, Hirvonen J, Santos H A. Adv Mater , 2014 . 26 ( 26 ): 4497 - 4503 . DOI:10.1002/adma.201400953http://doi.org/10.1002/adma.201400953 .
Li W, Li Y Z, Liu Z H, Kerdsakundee N, Zhang M, Zhang F, Liu X Y, Bauleth-Ramos T, Lian W H, Mäkilä E, Kemell M, Ding Y P, Sarmento B, Wiwattanapatapee R, Salonen J, Zhang H B, Hirvonen J T, Liu D F, Deng X M, Santos H A. Biomaterials , 2018 . 185 322 - 332 . DOI:10.1016/j.biomaterials.2018.09.024http://doi.org/10.1016/j.biomaterials.2018.09.024 .
Li Hongjun(李洪军), Liu Jing(刘晶), Du Jinzhi(杜金志), Wang Jun(王均). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 6 ): 567 - 574.
Feng Q, Li Q T, Wen H J, Chen J X, Liang M H, Huang H H, Lan D X, Dong H, Cao X D. Adv Funct Mater , 2019 . 29 ( 50 ): 1906690 DOI:10.1002/adfm.201906690http://doi.org/10.1002/adfm.201906690 .
Li H J, Du J Z, Du X J, Xu C F, Sun C Y, Wang H X, Cao Z T, Yang X Z, Zhu Y H, Nie S M, Wang J. Proc Natl Acad Sci U S A , 2016 . 113 ( 15 ): 4164 - 4169 . DOI:10.1073/pnas.1522080113http://doi.org/10.1073/pnas.1522080113 .
Sun X R, Wang G W, Zhang H, Hu S Q, Liu X, Tang J B, Shen Y Q. ACS Nano , 2018 . 12 ( 6 ): 6179 - 6192 . DOI:10.1021/acsnano.8b02830http://doi.org/10.1021/acsnano.8b02830 .
Sun C Y, Liu Y, Du J Z, Cao Z T, Xu C F, Wang J. Angew Chem Int Ed , 2016 . 55 ( 3 ): 1010 - 1014 . DOI:10.1002/anie.201509507http://doi.org/10.1002/anie.201509507 .
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构