浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
[ "陶友华,男,1981年生,博士生导师. 2008年于中国科学院长春应用化学研究所获得高分子化学与物理的理学博士学位,导师为王献红研究员. 曾在日本名古屋大学、美国科罗拉多大学博尔德分校以及德克萨斯理工大学从事博士后研究. 2013年加入中国科学院长春应用化学研究所独立开展研究工作,主要从事聚氨基酸材料的合成和应用研究,在Nat. Chem.,J. Am. Chem. Soc., Chem. Sci., Macromolecules,Biomacromolecules等国际期刊上发表论文40余篇,获授权中国发明专利5项. 2014年获得中国科学院百人计划资助,现担任中国材料研究学会环境材料分会理事,中国科学院长春应用化学研究所学术委员会委员,中国科学院生态环境高分子材料重点实验室学术委员会委员" ]
纸质出版日期:2020-9-1,
网络出版日期:2020-7-9,
收稿日期:2020-4-5,
修回日期:2020-5-2,
扫 描 看 全 文
和文婧, 陶友华. 有机催化的氨基酸来源单体的开环聚合[J]. 高分子学报, 2020,51(10):1083-1091.
Wen-jing He, You-hua Tao. Organocatalytic Ring-opening Polymerization of Amino Acid-based Monomers[J]. Acta Polymerica Sinica, 2020,51(10):1083-1091.
和文婧, 陶友华. 有机催化的氨基酸来源单体的开环聚合[J]. 高分子学报, 2020,51(10):1083-1091. DOI: 10.11777/j.issn1000-3304.2020.20094.
Wen-jing He, You-hua Tao. Organocatalytic Ring-opening Polymerization of Amino Acid-based Monomers[J]. Acta Polymerica Sinica, 2020,51(10):1083-1091. DOI: 10.11777/j.issn1000-3304.2020.20094.
以具有多个官能基团的氨基酸单体为原料,通过发展新的合成方法制备高分子,不仅可以大幅降低合成高分子工业对石油的依赖程度,还能获得具有丰富功能侧基的聚氨基酸、聚酯等功能高分子材料,已经成为当今世界上高分子合成化学的前沿和热点领域. 开环聚合是氨基酸单体聚合的核心,但是氨基酸开环聚合领域目前仍存在诸多瓶颈科学问题:(1)缺乏合适的环状单体用以获得一些重要的生物大分子如聚(
ε
-赖氨酸)、聚(
γ
-谷氨酸)等;(2)氨基酸来源环状单体,在开环聚合时容易消旋,导致聚合物立构规整度降低. 这些都严重制约着氨基酸聚合物的发展和应用. 针对这些挑战,近年来我们课题组从高效高选择性的有机催化剂的角度出发,发展了有机催化的七元环状赖氨酸单体的开环聚合,突破了抗菌性聚(
ε
-赖氨酸)只能采用生物法合成的局限,并发展了有机弱碱催化的氨基酸来源
O
-羧基环内酸酐(OCA)单体的开环聚合,有效地抑制了单体在开环聚合过程中的消旋现象. 我们相信,进一步发展高效高选择性的有机催化体系是未来氨基酸单体开环聚合研究的重中之重.
Poly(amino acid)s are important biomimetic materials due to their unique biocompatibility
and potential application in gene transfection
drug delivery
and prevention of viral infections. For example
poly(
ε
-lysine) is an uncommon cationic homopolymer produced by the fermentation process. Although poly(amino acid)s are developing rapidly
the simple synthesis of poly(amino acid)s
especially functional poly(amino acid)s such as poly(
ε
-lysine) still remains a challenge. Fortunately
we have seen a drastic rising trend in the area of organocatalytic ring-opening polymerization (ROP) of amino acid-based monomers for polymers. Our lab succeeded in developing a superbase
t
-BuP
4
-catalyzed ROP of cyclic lysine monomers
affording high molecular weight poly(
ε
-lysine) bearing pendant protected amino groups with high monomer conversion (up to 95%). The organocatalytic polymerization could proceed at low reaction temperature (
e.g
.
60 °C) compatible with readily removable protecting groups
providing a sustainable and new methodology toward facile preparation of poly(
ε
-lysine). Moreover
we developed an effective bifunctional single molecule organocatalysis for selective ROP of amino acid-based
O
-carboxyanhydride (OCA) monomers without epimerization. The close vicinity of both activating groups in the same molecule engender an amplified synergetic effect and thus allows for the use of mild bases
thereby leading to minimal epimerization for polymerization. In the following article
recent examples of the organocatalysis for amino acid-based polymers synthesis are presented
as will their suitability for stereoregular isotactic polymers. The advantages and limitations of the organocatalytic ROP of amino acid-based monomers are discussed
which is important for the simple and general synthesis of amino acid-based polymers.
有机催化氨基酸聚(ε-赖氨酸)开环聚合立构规整
OrganocatalysisAmino acidPoly(ε-lysine)Ring-opening polymerizationStereoregularity
Kricheldorf H R. Angew Chem , 2006 . 45 5752 - 5784 . DOI:10.1002/anie.200600693http://doi.org/10.1002/anie.200600693 .
Song Z, Fu H, Wang R, Pacheco L A, Wang X, Lin Y, Cheng J. Chem Soc Rev , 2018 . 47 7401 - 7425 . DOI:10.1039/C8CS00095Fhttp://doi.org/10.1039/C8CS00095F .
Martin V B, Bourissou D. ACS Macro Lett , 2015 . 4 792 - 798 . DOI:10.1021/acsmacrolett.5b00376http://doi.org/10.1021/acsmacrolett.5b00376 .
Deming T J. Chem Rev , 2016 . 116 786 - 808 . DOI:10.1021/acs.chemrev.5b00292http://doi.org/10.1021/acs.chemrev.5b00292 .
Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Chem Rev , 2009 . 109 5528 - 5578 . DOI:10.1021/cr900049thttp://doi.org/10.1021/cr900049t .
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G, Hedrick J L. Chem Rev , 2007 . 107 5813 - 5840 . DOI:10.1021/cr068415bhttp://doi.org/10.1021/cr068415b .
Cheng J, Deming T J. J Am Chem Soc , 2001 . 123 9457 - 9458 . DOI:10.1021/ja0110022http://doi.org/10.1021/ja0110022 .
D'Este M, Alvarado-Morales M, Angelidaki I. Biotechnol Adv , 2018 . 36 14 - 25 . DOI:10.1016/j.biotechadv.2017.09.001http://doi.org/10.1016/j.biotechadv.2017.09.001 .
Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报) , 2016 . ( 9 ): 1151 - 1159 . DOI:10.11777/j.issn1000-3304.2016.16130http://doi.org/10.11777/j.issn1000-3304.2016.16130 .
Thomas C M. Chem Soc Rev , 2010 . 39 165 - 173 . DOI:10.1039/B810065Ahttp://doi.org/10.1039/B810065A .
Shao J, Sun J R, Bian X C, Cui Y, Zhou Y C, Li G, Chen X S. Macromolecules , 2013 . 46 6963 - 6971 . DOI:10.1021/ma400938vhttp://doi.org/10.1021/ma400938v .
Tao Y, Chen X, Fan J, Wang S X, Xiao C, Cui F, Li Y, Bian Z, Chen X, Wang X. Chem Sci , 2015 . 6 6385 - 6391 . DOI:10.1039/C5SC02479Jhttp://doi.org/10.1039/C5SC02479J .
Wang R, Zhang J, Yin Q, Xu Y, Cheng J, Tong R. Angew Chem Int Ed , 2016 . 55 13010 - 13014 . DOI:10.1002/anie.201605508http://doi.org/10.1002/anie.201605508 .
Feng Q, Tong R. J Am Chem Soc , 2017 . 139 6177 - 6182 . DOI:10.1021/jacs.7b01462http://doi.org/10.1021/jacs.7b01462 .
Sun Y, Jia Z, Chen C, Cong Y, Mao X, Wu J. J Am Chem Soc , 2017 . 139 10723 - 10732 . DOI:10.1021/jacs.7b04712http://doi.org/10.1021/jacs.7b04712 .
Feng Q, Yang L, Zhong Y, Guo D, Liu G, Xie L, Huang W, Tong R. Nat Commun , 2018 . 9 1559 - 1568 . DOI:10.1038/s41467-018-03879-5http://doi.org/10.1038/s41467-018-03879-5 .
Buchard A, Carbery D R, Davidson M G, Ivanova P K, Jeffery B J, Kociok-Köhn G I, Lowe J P. Angew Chem Int Ed , 2014 . 53 13858 - 13861 . DOI:10.1002/anie.201407525http://doi.org/10.1002/anie.201407525 .
Zhang C, Wu H, Li Y, Yang J, Zhang X. Nat Commun , 2018 . 9 ( 1 ): 2137 DOI:10.1038/s41467-018-04554-5http://doi.org/10.1038/s41467-018-04554-5 .
Ji H, Wang B, Pan L, Li Y. Angew Chem Int Ed , 2018 . 57 ( 51 ): 16888 - 16892 . DOI:10.1002/anie.201810083http://doi.org/10.1002/anie.201810083 .
Li H, He G, Chen Y, Zhao J, Zhang G. ACS Macro Lett , 2019 . 8 ( 8 ): 973 - 978 . DOI:10.1021/acsmacrolett.9b00439http://doi.org/10.1021/acsmacrolett.9b00439 .
Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed , 2017 . 56 12987 - 12990 . DOI:10.1002/anie.201707122http://doi.org/10.1002/anie.201707122 .
Chen J, Li M, He W, Tao Y, Wang, X. Macromolecules , 2017 . 50 9128 - 9134 . DOI:10.1021/acs.macromol.7b02331http://doi.org/10.1021/acs.macromol.7b02331 .
He W, Tao Y, Wang X. Macromolecules , 2018 . 51 8248 - 8257 . DOI:10.1021/acs.macromol.8b01790http://doi.org/10.1021/acs.macromol.8b01790 .
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. J Am Chem Soc , 2019 . 141 ( 1 ): 281 - 289 . DOI:10.1021/jacs.8b09739http://doi.org/10.1021/jacs.8b09739 .
Leuchs H. Chem Ber , 1906 . 39 857 - 861 . DOI:10.1002/cber.190603901133http://doi.org/10.1002/cber.190603901133 .
Curtius T, Sieber W. Ber Dtsch Chem Ges , 1921 . 54 1430 - 1437 . DOI:10.1002/cber.19210540707http://doi.org/10.1002/cber.19210540707 .
Curtius T, Sieber W. Ber Dtsch Chem Ges , 1922 . 55 1543 - 1558 . DOI:10.1002/cber.19220550608http://doi.org/10.1002/cber.19220550608 .
Woodward R B, Schramm C H. J Am Chem Soc , 1947 . 69 ( 6 ): 1551 - 1552.
Fasman G D, Idelson M, Blout E R. J Am Chem Soc , 1961 . 83 709 - 712 . DOI:10.1021/ja01464a041http://doi.org/10.1021/ja01464a041 .
Deming T J. Nature , 1997 . 390 386 - 389 . DOI:10.1038/37084http://doi.org/10.1038/37084 .
Zhao W, Gnanou Y, Hadjichristidis N. Polym Chem , 2015 . 6 6193 - 6201 . DOI:10.1039/C5PY00874Chttp://doi.org/10.1039/C5PY00874C .
Zhao W, Lv Y, Li J, Feng Z, Ni Y, Hadjichristidis N. Nat Commun , 2019 . 10 ( 1 ): 1 - 11 . DOI:10.1038/s41467-018-07882-8http://doi.org/10.1038/s41467-018-07882-8 .
Zhang H, Nie Y, Zhi X, Du H, Yang J. Chem Commun , 2017 . 53 5155 - 5158 . DOI:10.1039/C7CC01440Fhttp://doi.org/10.1039/C7CC01440F .
Liang J, Zhi X, Zhou Q, Yang J. Polymer , 2019 . 165 83 - 90 . DOI:10.1016/j.polymer.2019.01.027http://doi.org/10.1016/j.polymer.2019.01.027 .
Zhang Y, Liu R, Jin H, Song W, Augustine R, Kim I. Commun Chem , 2018 . 1 ( 1 ): 40 - 46 . DOI:10.1038/s42004-018-0040-0http://doi.org/10.1038/s42004-018-0040-0 .
Zhou C, Li P, Qi X, Sharif A R, Poon Y F, Cao Y, Chang M W, Leong SJ, Chan-Park M B. Biomaterials , 2011 . 32 2704 - 2712 . DOI:10.1016/j.biomaterials.2010.12.040http://doi.org/10.1016/j.biomaterials.2010.12.040 .
Wang R, Xu D, Liang L, Xu T, Liu W, Ouyang P, Chi B, Xu H. RSC Adv , 2016 . 6 8620 - 8627 . DOI:10.1039/C5RA15616Ehttp://doi.org/10.1039/C5RA15616E .
Bankar S B, Singhal R S. RSC Adv , 2013 . 3 8586 - 8603 . DOI:10.1039/c3ra22596hhttp://doi.org/10.1039/c3ra22596h .
Memeger W, Campbell G C, Davidson F. Macromolecules , 1996 . 29 6475 - 6480 . DOI:10.1021/ma960659ihttp://doi.org/10.1021/ma960659i .
Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules , 2007 . 40 4154 - 4158 . DOI:10.1021/ma070316shttp://doi.org/10.1021/ma070316s .
Hu S, Zhao J, Zhang G. ACS Macro Lett , 2016 . 5 40 - 44 . DOI:10.1021/acsmacrolett.5b00839http://doi.org/10.1021/acsmacrolett.5b00839 .
Molenberg A, Möller M A. Macromol Rapid Commun , 1995 . 16 449 - 453 . DOI:10.1002/marc.1995.030160606http://doi.org/10.1002/marc.1995.030160606 .
Hoyle C E, Bowman C N. Angew Chem Int Ed , 2010 . 49 1540 - 1573 . DOI:10.1002/anie.200903924http://doi.org/10.1002/anie.200903924 .
Li M, Cui F, Li Y, Tao Y, Wang X. Macromolecules , 2016 . 49 9415 - 9424 . DOI:10.1021/acs.macromol.6b02244http://doi.org/10.1021/acs.macromol.6b02244 .
Thillaye B O, Bonduelle C, Martin V B, Bourissou D. Chem Commun , 2008 . 15 1786 - 1788.
Lu Y, Yin L, Zhang Y, Zhang Z, Xu Y, Tong R, Cheng J. ACS Macro Lett , 2012 . 1 441 - 444 . DOI:10.1021/mz200165chttp://doi.org/10.1021/mz200165c .
Chen X, Lai H, Xiao C, Tian H, Chen X, Tao Y, Wang X. Polym Chem , 2014 . 5 6495 - 6502 . DOI:10.1039/C4PY00930Dhttp://doi.org/10.1039/C4PY00930D .
Pounder R J, Fox D J, Barker I A, Bennison M J, Dove A P. Polym Chem , 2011 . 2 2204 - 2212 . DOI:10.1039/c1py00254fhttp://doi.org/10.1039/c1py00254f .
Overberg C G, Weise J K. J Am Chem Soc , 1968 . 90 ( 13 ): 3533 - 3537 . DOI:10.1021/ja01015a043http://doi.org/10.1021/ja01015a043 .
Kato M, Toshima K, Matsumura S. Biomacromolecules , 2007 . 8 ( 11 ): 3590 - 3596 . DOI:10.1021/bm700623shttp://doi.org/10.1021/bm700623s .
Bannin T J, Kiesewetter M K. Macromolecules , 2015 . 48 ( 16 ): 5481 - 5486 . DOI:10.1021/acs.macromol.5b01463http://doi.org/10.1021/acs.macromol.5b01463 .
Kausar A, Zulfiqar S, Sarwar M I. Polym Rev , 2014 . 54 ( 2 ): 185 - 267 . DOI:10.1080/15583724.2013.863209http://doi.org/10.1080/15583724.2013.863209 .
Higashihara T, Ueda M. Macromolecules , 2015 . 48 ( 7 ): 1915 - 1929 . DOI:10.1021/ma502569rhttp://doi.org/10.1021/ma502569r .
Suzuki M, Makimura K, Matsuoka S. Biomacromolecules , 2016 . 17 ( 3 ): 1135 - 1141 . DOI:10.1021/acs.biomac.5b01748http://doi.org/10.1021/acs.biomac.5b01748 .
Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J Am Chem Soc , 2019 . 141 4928 - 4935 . DOI:10.1021/jacs.9b00031http://doi.org/10.1021/jacs.9b00031 .
0
浏览量
82
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构