浏览全部资源
扫码关注微信
武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
E-mail: dong@whut.edu.cn Lijie-Dong, E-mail:dong@whut.edu.cn
纸质出版日期:2020-10-21,
网络出版日期:2020-7-6,
收稿日期:2020-4-10,
修回日期:2020-5-9,
扫 描 看 全 文
王继甜, 陈卓, 汪宇琪, 楚一帆, 潘萌, 董丽杰. 单轴拉伸对聚偏二氟乙烯薄膜压电响应性能的影响[J]. 高分子学报, 2020,51(12):1367-1373.
Ji-tian Wang, Zhuo Chen, Yu-qi Wang, Yi-fan Chu, Meng Pan, Li-jie Dong. Effect of Uniaxial Tension on Piezoelectric Response of PVDF Film[J]. Acta Polymerica Sinica, 2020,51(12):1367-1373.
王继甜, 陈卓, 汪宇琪, 楚一帆, 潘萌, 董丽杰. 单轴拉伸对聚偏二氟乙烯薄膜压电响应性能的影响[J]. 高分子学报, 2020,51(12):1367-1373. DOI: 10.11777/j.issn1000-3304.2020.20099.
Ji-tian Wang, Zhuo Chen, Yu-qi Wang, Yi-fan Chu, Meng Pan, Li-jie Dong. Effect of Uniaxial Tension on Piezoelectric Response of PVDF Film[J]. Acta Polymerica Sinica, 2020,51(12):1367-1373. DOI: 10.11777/j.issn1000-3304.2020.20099.
采用溶液涂覆成膜工艺制备聚偏二氟乙烯(PVDF)薄膜,对其进行单轴拉伸制得不同拉伸比(
R
= 3
5
7)的PVDF薄膜. 研究了不同拉伸比对薄膜化学结构、结晶行为、铁电性能及压电响应性能的影响,实现了对PVDF结晶相的本征压电响应性能的增强. 单轴拉伸使PVDF结晶度提高,同时促使其结晶相由
α
相向
β
相转变;拉伸比越大,极性
β
相相对含量越高,当拉伸比为7时,薄膜
β
相的相对含量最高达到85.12%,此时薄膜的电输出性能最佳:外加电场为200 MV/m时,其剩余极化强度为2.69 μC/cm
2
;应变为5%时,其平均闭路电流密度为58.92 nA/cm
2
,平均开路电压为89.70 mV.
In order to prepare organic piezoelectric materials with good piezoelectric properties and enhance the intrinsic piezoelectric properties of the poly(vinylidene fluoride) (PVDF) crystal phase
a solution coating film-forming process was adopted to prepare PVDF films. The films with different stretch ratios (
R
= 3
5
7) were made by uniaxial stretch process. The morphology and structure of the films were investigated by scanning electron microscopy (SEM)
transform infrared spectroscopy (FTIR)
X-ray diffraction (XRD)
differential scanning calorimetry (DSC). Gold electrode is sprayed on the surface of the film and then the film is subjected to high-voltage electric field polarization treatment. Connect the films to the sampling multimeter to further study the piezoelectric properties of the films. It shows that uniaxial stretch can increase the crystallinity of PVDF and promote the transformation of
α
phase into
β
phase. During the stretch process
the molecular segments of PVDF are highly oriented to form the
β
phase of the all-
trans
conformational structure. The larger the stretch ratio
the higher the crystallinity of PVDF and the higher the relative content of the polar
β
phase. When the stretch ratio is 7
the relative content of
β
phase increases to 85.12%
which is 1.5 times higher than that of the unstretched film. Since the intrinsic piezoelectric properties of PVDF are controlled by its crystalline
β
phase content
the larger the stretch ratio
the better the ferroelectric and piezoelectric properties of the film. The film exhibits the best electrical properties when it is stretched 7 times: When the applied electric field is 200 MV/m
the residual polarization intensity reaches 2.69 μC/cm
2
. When the strain is 5%
the average output current density is 58.92 nA/cm
2
and the average output voltage is 89.70 mV. In this study
the single-axis stretched PVDF film has a high voltage sensing sensitivity
and a PVDF film in a small area size (22 mm × 4 mm) can provide an output voltage as high as 89.70 mV. Therefore
the material can be used to produce ultra-thin
lightweight portable electronic devices in ideal shape
and is expected to be used as a flexible touchable sensor to obtain biomechanical energy from the human body for health monitoring.
聚偏二氟乙烯薄膜单轴拉伸晶型转变压电响应
PVDF filmUniaxial stretchCrystal transitionPiezoelectric response
Chu Y, Zhong J W, Liu H L, Ma Y, Liu Nathaniel, Song Y, Liang J M, Shao Z C, Sun Y, Dong Y, Wang X H, Lin L W. Adv Funct Mater , 2018 . 28 ( 40 ): 1803413 DOI:10.1002/adfm.201803413http://doi.org/10.1002/adfm.201803413 .
Yu Y H, Sun H Y, Orbay H, Chen F, Christopher G E, Cai W B, Wang X D.. Nano Energy , 2016 . 27 275 - 281 . DOI:10.1016/j.nanoen.2016.07.015http://doi.org/10.1016/j.nanoen.2016.07.015 .
Karan S K, Mandal D, Khatua B B. Nanoscale , 2015 . 7 ( 24 ): 10655 - 10666 . DOI:10.1039/C5NR02067Khttp://doi.org/10.1039/C5NR02067K .
Huang T, Wang C, Yu H, Wang H Z, Zhang Q H, Zhu M F. Nano Energy , 2015 . 14 226 - 235 . DOI:10.1016/j.nanoen.2015.01.038http://doi.org/10.1016/j.nanoen.2015.01.038 .
Chen H, Miao L, Su Z, Song Y, Han M D, Chen X X, Cheng X L, Chen D M, Zhang H X. Nano Energy , 2017 . 40 65 - 72 . DOI:10.1016/j.nanoen.2017.08.001http://doi.org/10.1016/j.nanoen.2017.08.001 .
Ai Y F, Lou Z, Chen S, Chen D, Wang Z M, Jiang K, Shen G Z. Nano Energy , 2017 . 35 121 - 127 . DOI:10.1016/j.nanoen.2017.03.039http://doi.org/10.1016/j.nanoen.2017.03.039 .
Jr R G. J Appl Polym Sci , 2006 . 100 ( 4 ): 3272 - 3279 . DOI:10.1002/app.23137http://doi.org/10.1002/app.23137 .
Prest W M, Luca D J. J Appl Phys , 1978 . 49 ( 10 ): 5042 DOI:10.1063/1.324439http://doi.org/10.1063/1.324439 .
Gregorio R, Cestari M. J Polym Sci, Part B: Polym Phys , 1994 . 32 ( 5 ): 859 - 870 . DOI:10.1002/polb.1994.090320509http://doi.org/10.1002/polb.1994.090320509 .
Ramasundaram S, Yoon S, Kim K J, Lee J S. Macromol Chem Phys , 2008 . 209 ( 24 ): 2516 - 2526 . DOI:10.1002/macp.200800501http://doi.org/10.1002/macp.200800501 .
Tiwari V, Srivastava G. J Polym Res , 2014 . 21 ( 11 ): 587 DOI:10.1007/s10965-014-0587-0http://doi.org/10.1007/s10965-014-0587-0 .
Sajkiewicz P, Wasiak A, Goclowski Z.. Eur Polym J , 1999 . 35 ( 3 ): 423 - 429 . DOI:10.1016/S0014-3057(98)00136-0http://doi.org/10.1016/S0014-3057(98)00136-0 .
Yamada T, Mizutani T, Ieda M. J Phys D Appl Phys , 1982 . 15 ( 2 ): 289 - 297 . DOI:10.1088/0022-3727/15/2/014http://doi.org/10.1088/0022-3727/15/2/014 .
Rathod V T, Mahapatra D R, Jain A, Gayathri A. Sensor Actuat A-Phys , 2010 . 163 ( 1 ): 164 - 171 . DOI:10.1016/j.sna.2010.08.017http://doi.org/10.1016/j.sna.2010.08.017 .
Kanik M, Aktas O, Sen H S, Durgun E, Bayindir M. ACS Nano , 2014 . 8 ( 9 ): 9311 - 9323 . DOI:10.1021/nn503269bhttp://doi.org/10.1021/nn503269b .
Chang C, Tran V H, Wang J, Fuh Y H, Lin L. Nano Lett , 2010 . 10 ( 2 ): 726 - 731 . DOI:10.1021/nl9040719http://doi.org/10.1021/nl9040719 .
Sharma M, Madras G, Bose S. Phys Chem Chem Phys , 2014 . 16 ( 28 ): 14792 - 14799 . DOI:10.1039/c4cp01004chttp://doi.org/10.1039/c4cp01004c .
Marega C, Marigo A. Eur Polym J , 2003 . 39 ( 8 ): 1713 - 1720 . DOI:10.1016/S0014-3057(03)00062-4http://doi.org/10.1016/S0014-3057(03)00062-4 .
Salimi A, Yousefi A A. Polym Test , 2003 . 22 ( 6 ): 699 - 704 . DOI:10.1016/S0142-9418(03)00003-5http://doi.org/10.1016/S0142-9418(03)00003-5 .
Lanceros-Méndez, S, Mano J F, Costa A M, Schmidt V H. J Macromol Sci B , 2001 . 40 ( 3 ): 517 - 527.
Gregorio R, Capitao R C. J Mater Sci , 2000 . 35 ( 2 ): 299 - 306 . DOI:10.1023/A:1004737000016http://doi.org/10.1023/A:1004737000016 .
Mohammadi B, Yousefi A A, Bellah S M. Polym Test , 2007 . 26 ( 1 ): 42 - 50 . DOI:10.1016/j.polymertesting.2006.08.003http://doi.org/10.1016/j.polymertesting.2006.08.003 .
Gregorio R, Nociti N C. J Phys D Appl Phys , 1999 . 28 ( 2 ): 432 .
Laroche G, Marois Y, Guidoin R, Martin W K, Martin L, How T. J Biomed Mater Res , 1995 . 29 ( 12 ): 1525 - 1536 . DOI:10.1002/jbm.820291209http://doi.org/10.1002/jbm.820291209 .
Steinmann W, Walter S, Seide G, Gries T, Schubnell M. J Appl Polym Sci , 2011 . 120 ( 1 ): 21 - 35 . DOI:10.1002/app.33087http://doi.org/10.1002/app.33087 .
Sencadas V, Moreira M V, Lancerosmendez S, Pouzada A S, Filho R G. Mater Sci Forum , 2006 . 514-516 872 - 876 . DOI:10.4028/www.scientific.net/MSF.514-516.872http://doi.org/10.4028/www.scientific.net/MSF.514-516.872 .
Matsushige K, Nagata K, Imada S, Takemura T. Polymer , 1980 . 21 ( 12 ): 1391 - 1397 . DOI:10.1016/0032-3861(80)90138-Xhttp://doi.org/10.1016/0032-3861(80)90138-X .
Chang W Y, Fang T H, Liu S Y, Lin Y C. Mater Sci Eng A , 2008 . 480 ( 1-2 ): 477 - 482 . DOI:10.1016/j.msea.2007.07.042http://doi.org/10.1016/j.msea.2007.07.042 .
Furukawa T, Date M, Fukada E. J Appl Phys , 1980 . 51 ( 2 ): 1135 - 1141 . DOI:10.1063/1.327723http://doi.org/10.1063/1.327723 .
0
浏览量
36
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构