浏览全部资源
扫码关注微信
北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 北京大学化学与分子工程学院 北京 100871
E-mail: xhwan@pku.edu.cn† Frustrated经常被翻译成“受阻”(如高分子化学领域)或“受挫”(如结晶学领域). FLP这个词的发明人Stephan教授等认为FLP像是一对夫妻,喜欢在一起形成加合物. 然而,大位阻取代基使他们没有办法在一起,从情绪上讲他们是沮丧的. 考虑到创始人发明这个词的初衷,故在这里将其翻译成“沮丧”,并加上双引号以避免歧义. E-mail: xhwan@pku.edu.cn
纸质出版日期:2020-6,
网络出版日期:2020-5-21,
收稿日期:2020-4-16,
修回日期:2020-5-6,
扫 描 看 全 文
宛新华. “沮丧”Lewis酸碱对(FLP)催化序列可控高分子合成:能否再次打开“潘多拉魔盒”[J]. 高分子学报, 2020,51(6):569-572.
Xin-hua Wan. The Synthesis of Sequence-controlled Multiblock Copolymers by Frustrated Lewis Pair: Can the Pandora’s Box be Reopened?[J]. Acta Polymerica Sinica, 2020,51(6):569-572.
宛新华. “沮丧”Lewis酸碱对(FLP)催化序列可控高分子合成:能否再次打开“潘多拉魔盒”[J]. 高分子学报, 2020,51(6):569-572. DOI: 10.11777/j.issn1000-3304.2020.20104.
Xin-hua Wan. The Synthesis of Sequence-controlled Multiblock Copolymers by Frustrated Lewis Pair: Can the Pandora’s Box be Reopened?[J]. Acta Polymerica Sinica, 2020,51(6):569-572. DOI: 10.11777/j.issn1000-3304.2020.20104.
序列可控高分子合成被称为高分子合成领域的“圣杯”和终极目标之一. 由于其合成难度极大,被科学家比喻成无法再次被打开的“潘多拉魔盒”. 最近,吉林大学的张越涛课题组利用“沮丧”
†
Lewis酸碱对(FLP)活性聚合体系在序列可控高分子合成方面取得了突破. 他们通过有机超强膦碱和含铝的Lewis酸组成的FLP体系,可以快速并且大量地将4种甲基丙烯酸酯类单体合成为一个53嵌段的聚合物,不仅把以前的记录足足提高了大约2.5倍,而且每一段的聚合度(
dp
n
)高达50,也是以前的5倍. 该合成方法条件温和,过程简单,无需额外补加催化剂或是引发剂,每一段聚合只需要添加相应单体就可以快速进行,53嵌段聚合物仅需30 min就可以合成得到. 该FLP体系极具工业化应用前景,让科学家们看到了打开“潘多拉魔盒”的希望.
Sequence-controlled polymers have been regarded as a great challenging holy grail to be ultimately achieved in polymer science. However
its synthesis is just like a Pandora’s box that is impossible to be reopened due to the lack of efficient synthetic methodologies. More recently
Yuetao Zhang’s group at Jilin University has made a big breakthrough in the synthesis of sequence-controlled polymers by using living/controlled frustrated Lewis pair (FLP) polymerization system. FLP composed of organophosphorus superbase and organoaluminum Lewis acid can rapidly incoporate four methacrylic monomers into a tripentacontablock copolymers
which is by far the world’s highest record for block numbers (about 2.5 times of the previous record) and the degree of polymerization is 50 per block. This synthetic strategy has several remarkable features such as room-temperature synthesis and easily scale-up to high multigram experiment over 110 grams; simple procedure: no additional initiator or catalyst but only sequential addition of monomer is required for per block copolymerization. It only took 30 min to synthesize such a tripentacontablock copolymers. All these features indicated the very promising prospects of this FLP polymerization system in industry
inspiring the polymer chemists’ enthusiasm to reopen the pandora’s box.
序列可控高分子“沮丧”Lewis酸碱对活性聚合有机膦碱潘多拉魔盒
Sequence-controlled multiblock copolymersFrustrated Lewis pairLiving polymerizationOrganophosphorus superbasePandora’ box
Zhang Liuqiao(张留乔), Huang Zhihao(黄智豪), Zhang Zhengbiao(张正彪), Zhu Xiulin(朱秀林). Acta Polymerica Sinica(高分子学报) , 2018 . ( 9 ): 1144 - 1154 . DOI:10.11777/j.issn1000-3304.2018.18101http://doi.org/10.11777/j.issn1000-3304.2018.18101 .
Badi N, Lutz J F. Chem Soc Rev , 2009 . 38 ( 12 ): 3383 - 3390 . DOI:10.1039/b806413jhttp://doi.org/10.1039/b806413j .
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science , 2012 . 336 ( 6080 ): 434 - 440 . DOI:10.1126/science.1215368http://doi.org/10.1126/science.1215368 .
de Neve J, Haven J J, Maes L, Junkers T. Polym Chem , 2018 . 9 ( 38 ): 4692 - 4705 . DOI:10.1039/C8PY01190Ghttp://doi.org/10.1039/C8PY01190G .
Lutz J F. Macromol Rapid Commun , 2017 . 38 ( 24 ): 1700582 - 1700593 . DOI:10.1002/marc.201700582http://doi.org/10.1002/marc.201700582 .
Ouchi M, Terashima T, Sawamoto M. Chem Rev , 2009 . 109 ( 11 ): 4963 - 5050 . DOI:10.1021/cr900234bhttp://doi.org/10.1021/cr900234b .
Soeriyadi A H, Boyer C, Nystrom F, Zetterlund P B, Whittaker M R. J Am Chem Soc , 2011 . 133 ( 29 ): 11128 - 11131 . DOI:10.1021/ja205080uhttp://doi.org/10.1021/ja205080u .
Zhang Q, Collins J, Anastasaki A, Wallis R, Mitchell D A, Becer C R, Haddleton D M. Angew Chem Int Ed , 2013 . 52 ( 16 ): 4435 - 4439 . DOI:10.1002/anie.201300068http://doi.org/10.1002/anie.201300068 .
Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Nat Commun , 2013 . 4 ( 9 ): 2505 DOI:10.1038/ncomms3505http://doi.org/10.1038/ncomms3505 .
Engelis N G, Anastasaki A, Nurumbetov G, Truong N P, Nikolaou V, Shegiwal A, Whittaker M R, Davis T P, Haddleton D M. Nat Chem , 2017 . 9 ( 2 ): 171 - 178 . DOI:10.1038/nchem.2634http://doi.org/10.1038/nchem.2634 .
Zhao W C, He J H, Zhang Y T. Sci Bull , 2019 . 64 ( 24 ): 1830 - 1840 . DOI:10.1016/j.scib.2019.08.025http://doi.org/10.1016/j.scib.2019.08.025 .
Bai Yun(白云), Zhang Yuetao(张越涛). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 3 ): 233 - 246 . DOI:10.11777/j.issn1000-3304.2019.18269http://doi.org/10.11777/j.issn1000-3304.2019.18269 .
Wang Q Y, Zhao W C, He J H, Zhang Y T, Chen E Y X. Macromolecules , 2017 . 50 ( 1 ): 123 - 136 . DOI:10.1021/acs.macromol.6b02398http://doi.org/10.1021/acs.macromol.6b02398 .
Wang Q Y, Zhao W C, Zhang S T, He J H, Zhang Y T, Chen E Y X. ACS Catal , 2018 . 8 ( 4 ): 3571 - 3578 . DOI:10.1021/acscatal.8b00333http://doi.org/10.1021/acscatal.8b00333 .
Wang H Y, Wang Q Y, He J H, Zhang Y T. Polym Chem , 2019 . 10 ( 26 ): 3597 - 3603 . DOI:10.1039/C9PY00427Khttp://doi.org/10.1039/C9PY00427K .
Zhao W C, Wang Q Y, He J H, Zhang Y T. Polym Chem , 2019 . 10 ( 31 ): 4328 - 4335 . DOI:10.1039/C9PY00626Ehttp://doi.org/10.1039/C9PY00626E .
Bai Y, He J H, Zhang Y T. Angew Chem Int Ed , 2018 . 57 ( 52 ): 17230 - 17234 . DOI:10.1002/anie.201811946http://doi.org/10.1002/anie.201811946 .
Bai Y, Wang H Y, He J H, Zhang Y T. Angew Chem Int Ed, 2020, DOI: 10.1002/anie.20200401310.1002/anie.202004013
0
浏览量
48
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构