浏览全部资源
扫码关注微信
中国科学技术大学 中国科学院软物质化学重点实验室 合肥微尺度物质科学国家研究中心高分子科学与工程系 合肥 230026
[ "吴思,男,1982年生. 2005年于中国科学技术大学高分子科学与工程系获得学士学位;2005 ~ 2010年,中国科学技术大学和德国马普高分子所联合培养博士生,并于2010年获得博士学位;2010 ~ 2012年,在德国马普高分子所做博士后;2012 ~ 2018年,在德国马普高分子所担任课题组组长. 主持过5项德国的科研基金,并于2016年在丹麦被授予了“欧洲华人十大科技领军人才”称号. 于2018年3月回到中国科学技术大学高分子科学与工程系担任教授. 研究方向为光响应高分子,包括偶氮苯类高分子、对可见光响应的金属配位超分子聚合物、基于上转换纳米粒子的近红外光响应材料等" ]
纸质出版日期:2020-9-1,
网络出版日期:2020-7-30,
收稿日期:2020-4-27,
修回日期:2020-5-22,
扫 描 看 全 文
袁晨瑞, 许文聪, 梁烁丰, 吴思. 光致固液转变高分子[J]. 高分子学报, 2020,51(10):1130-1139.
Chen-rui Yuan, Wen-cong Xu, Shuo-feng Liang, Si Wu. Polymers for Photoinduced Reversible Solid-to-Liquid Transitions[J]. Acta Polymerica Sinica, 2020,51(10):1130-1139.
袁晨瑞, 许文聪, 梁烁丰, 吴思. 光致固液转变高分子[J]. 高分子学报, 2020,51(10):1130-1139. DOI: 10.11777/j.issn1000-3304.2020.20112.
Chen-rui Yuan, Wen-cong Xu, Shuo-feng Liang, Si Wu. Polymers for Photoinduced Reversible Solid-to-Liquid Transitions[J]. Acta Polymerica Sinica, 2020,51(10):1130-1139. DOI: 10.11777/j.issn1000-3304.2020.20112.
一些偶氮苯高分子可以在室温下发生光致可逆固液转变. 这些高分子中的偶氮苯基团能发生光致可逆顺反异构. 反式偶氮苯高分子是玻璃化转变温度(
T
g
)高于室温的固体. 在紫外光照下,反式偶氮苯高分子异构成顺式结构;而顺式偶氮苯高分子是
T
g
低于室温的液体. 顺式偶氮苯高分子在可见光照或者加热下可逆回复至反式,实现可逆固液转变. 与热致的固液转变相比,光致固液转变具有更高的时空分辨率,这使得偶氮苯高分子在功能材料领域有重要的应用前景. 本文介绍了光致可逆固液转变的偶氮苯高分子,讨论了其转变机理和设计原则,并介绍了偶氮苯高分子在自修复材料、黏合剂、光致驱动器、转移印刷和压印等领域的潜在应用.
Light can induce reversible solid-to-liquid transitions of some azobenzene-containing polymers (azopolymers). These kinds of azopolymers have photoswitchable glass transition temperature (
T
g
).
Trans
and
cis
isomers usually have different
T
g
. The
T
g
values of
trans
azopolymers are above room temperature
which are solids. On the contrary
cis
azopolymers are liquid with
T
g
values below room temperature.
Trans
-to-
cis
isomerization occurs by UV irradiation. Visible light or heat can induce
cis
-to-
trans
isomerization. The performance did not change after dozens of reversible cycles. Compared with heat-induced solid-to-liquid transition
photoinduced reversible solid-to-liquid transitions have higher spatiotemporal resolution. The mechanism of solid-to-liquid transition was discussed in this article. Side-chain azopolymers are most studied up to now. The results show that the length of spacer and alkyl tail of an azopolymer is the key factor of whether it shows photoinduced solid-to-liquid transition. Different structures of main chain azopolymers also affect photo isomerization
which could be efficiently constructed by reversible addition-fragmentation chain transfer polymerization (RAFT)
atom transfer radical polymerization (ATRP) and ring opening metathesis polymerization (ROMP). Azopolymers are widely used in self-healing materials
adhesives
photo-actuators
micro-actuators
transfer printing
nanoimprint
lithography
etc
. In this feature article
recent progress of azopolymers in photoinduced reversible solid-to-liquid transitions is reviewed
their potential applications are demonstrated
and the remaining challenges in this field are discussed.
高分子偶氮苯光致固液转变玻璃化转变温度光响应
PolymersAzobenzenePhotoinduced solid-to-liquid transitionGlass transition temperaturePhotoresponsive
Hartley G S. Nature , 1937 . 140 ( 3537 ): 281 - 281.
Hartley G S. J Chem Soc (Resumed) , 1938 . ( 0 ): 633 - 642.
Xu W C, Sun S D, Wu S. Angew Chem Int Ed , 2019 . 58 ( 29 ): 9712 - 9740 . DOI:10.1002/anie.201814441http://doi.org/10.1002/anie.201814441 .
Akiyama H, Yoshida M. Adv Mater , 2012 . 24 ( 17 ): 2353 - 2356 . DOI:10.1002/adma.201104880http://doi.org/10.1002/adma.201104880 .
Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, Norikane Y, Azummi R. ACS Appl Mater Interfaces , 2014 . 6 ( 10 ): 7933 - 7941 . DOI:10.1021/am501227yhttp://doi.org/10.1021/am501227y .
Hu J, Li X, Ni Y, Ma S D, Yu H F. J Mater Chem C , 2018 . 6 ( 40 ): 10815 - 10821 . DOI:10.1039/C8TC03693Dhttp://doi.org/10.1039/C8TC03693D .
Uchida E, Sakaki K, Nakamura Y, Azumi R, Hirai Y, Akiyama H, Yoshida M, Norikane Y. Chem Eur J , 2013 . 19 ( 51 ): 17391 - 17397 . DOI:10.1002/chem.201302674http://doi.org/10.1002/chem.201302674 .
Zhou H W, Xue C G, Weis P, Suzuki Y, Huang S L, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Nat Chem , 2017 . 9 ( 2 ): 145 - 151 . DOI:10.1038/nchem.2625http://doi.org/10.1038/nchem.2625 .
Pipertzis A, Hess A, Weis P, Papamokos G, Koynov K, Wu S, Floudas G. ACS Macro Lett , 2018 . 7 ( 1 ): 11 - 15 . DOI:10.1021/acsmacrolett.7b00800http://doi.org/10.1021/acsmacrolett.7b00800 .
Weis P, Hess A, Kircher G, Huang S, Auernhammer G K, Koynov K, Butt H J, Wu S. Chem Eur J , 2019 . 25 ( 46 ): 10946 - 10953 . DOI:10.1002/chem.201902273http://doi.org/10.1002/chem.201902273 .
Akiyama H, Fukata T, Yamashita A, Yoshida M, Kihara H. J Adhe , 2016 . 93 ( 10 ): 823 - 830.
Ito S, Yamashita A, Akiyama H, Kihara H, Yoshida M. Macromolecules , 2018 . 51 ( 9 ): 3243 - 3253 . DOI:10.1021/acs.macromol.8b00156http://doi.org/10.1021/acs.macromol.8b00156 .
Ito S, Akiyama H, Sekizawa R, Mori M, Yoshida M, Kihara H. ACS Appl Mater Interfaces , 2018 . 10 ( 38 ): 32649 - 32658 . DOI:10.1021/acsami.8b09319http://doi.org/10.1021/acsami.8b09319 .
Liu Y L, Chuo T W. Polym Chem-UK , 2013 . 4 ( 7 ): 2194 - 2205 . DOI:10.1039/c2py20957hhttp://doi.org/10.1039/c2py20957h .
Yoshie N, Saito S, Oya N. Polymer , 2011 . 52 ( 26 ): 6074 - 6079 . DOI:10.1016/j.polymer.2011.11.007http://doi.org/10.1016/j.polymer.2011.11.007 .
Ax J, Wenz G. Macromol Chem Phys , 2012 . 213 ( 2 ): 182 - 186 . DOI:10.1002/macp.201100410http://doi.org/10.1002/macp.201100410 .
Liu H, Xu B, Yang X, Li Z, Mo Z, Yao Y, Lin S. Compos Commun , 2020 . 19 233 - 238 . DOI:10.1016/j.coco.2020.03.014http://doi.org/10.1016/j.coco.2020.03.014 .
Zhou Y, Chen M S, Ban Q F, Zhang Z L, Shuang S M, Koynov K, Butt H J, Kong J, Wu S. ACS Macro Lett , 2019 . 8 ( 8 ): 968 - 972 . DOI:10.1021/acsmacrolett.9b00459http://doi.org/10.1021/acsmacrolett.9b00459 .
Chen M S, Yao B J, Kappl M, Liu S Y, Yuan J Y, Berger R, Zhang F A, Butt H-J, Liu Y L, Wu S. Adv Funct Mater , 2019 . 30 ( 4 ): 1906752 .
Lv J A, Liu Y, Wei J, Chen E, Qin L, Yu Y L. Nature , 2016 . 537 ( 7619 ): 179 - 184 . DOI:10.1038/nature19344http://doi.org/10.1038/nature19344 .
Xu B, Zhu C, Qin L, Wei J, Yu Y L. Small , 2019 . 15 ( 24 ): 1901847 DOI:10.1002/smll.201901847http://doi.org/10.1002/smll.201901847 .
Yang B, Cai F, Huang S, Yu H F. Angew Chem Int Ed , 2020 . 59 ( 10 ): 4035 - 4042 . DOI:10.1002/anie.201914201http://doi.org/10.1002/anie.201914201 .
Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G. Proc Natl Acad Sci USA , 2019 . 116 ( 13 ): 5973 - 5978 . DOI:10.1073/pnas.1817082116http://doi.org/10.1073/pnas.1817082116 .
Weis P, Wang D, Wu S. Macromolecules , 2016 . 49 ( 17 ): 6368 - 6373 . DOI:10.1021/acs.macromol.6b01367http://doi.org/10.1021/acs.macromol.6b01367 .
0
浏览量
181
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构