浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: yhniu@scu.edu.cn Yan-hua Niu, E-mail: yhniu@scu.edu.cn
E-mail: guangxianli@scu.edu.cn Guang-xian Li, E-mail: guangxianli@scu.edu.cn
纸质出版日期:2021-1-3,
网络出版日期:2020-7-31,
收稿日期:2020-5-8,
修回日期:2020-6-5,
扫 描 看 全 文
何玺, 罗欢, 牛艳华, 李光宪. 混合离子液体对聚甲基丙烯酸甲酯分子链缠结及松弛行为的影响[J]. 高分子学报, 2021,52(1):84-93.
Xi He, Huan Luo, Yan-hua Niu, Guang-xian Li. Effect of Mixed Ionic Liquids on Chain Entanglement and Relaxation of Poly(methyl methacrylate)[J]. Acta Polymerica Sinica, 2021,52(1):84-93.
何玺, 罗欢, 牛艳华, 李光宪. 混合离子液体对聚甲基丙烯酸甲酯分子链缠结及松弛行为的影响[J]. 高分子学报, 2021,52(1):84-93. DOI: 10.11777/j.issn1000-3304.2020.20116.
Xi He, Huan Luo, Yan-hua Niu, Guang-xian Li. Effect of Mixed Ionic Liquids on Chain Entanglement and Relaxation of Poly(methyl methacrylate)[J]. Acta Polymerica Sinica, 2021,52(1):84-93. DOI: 10.11777/j.issn1000-3304.2020.20116.
首先通过两步法合成了具有双咪唑环阳离子结构的离子液体(DIL),并将其与单咪唑环离子液体(MIL)进行混合以调控黏度变化,混合离子液体(ILs)的黏度符合对数混合规则且随温度变化呈现Arrhenius型流体行为. 进一步通过动态流变、示差扫描量热(DSC)、电化学测试等方法研究了混合离子液体中DIL比例对聚甲基丙烯酸甲酯(PMMA)链缠结和松弛行为的影响,并讨论了PMMA/ILs体系热稳定性、玻璃化转变及离子电导率等的变化. 结果表明,DIL独特的双咪唑环结构可与PMMA分子形成更多相互作用位点,从而导致凝聚缠结的形成,很大程度上限制了PMMA分子链的运动和松弛. 随DIL含量增加,PMMA/ILs体系的松弛时间、热分解温度、玻璃化转变温度等参数均呈增大趋势,但其离子电导率有所损失,这与DIL较大的分子尺寸和运动能力有关.
A kind of dicationic ionic liquid (DIL) [C
8
(MIM)
2
][TFSI]
2
with double charged imidazole rings was successfully synthesized and mixed with a monocationic ionic liquids (MIL) [C
8
(MIM)][TFSI]
. Compared with MIL
the double imidazolium rings on the DIL cation greatly limits the vibration ability of the alkyl chain
which shows a much higher wavenumber in infrared spectrum. The DIL/MIL mixtures show Arrhenius fluid behaviour
and their viscosities follow the logarithmic mixing rule. With the increase of DIL content in the ILs mixtures
the viscosity and flow activation energy gradually increase
which is closely related to the molecular size and intermolecular interaction of DIL. Then
the effect of mixed ILs on the entanglement and relaxation of poly(methyl methacrylate) (PMMA) was extensively investigated by rheological tests. The master curves obtained by time-temperature superposition principle show that DIL could significantly change the relaxation behaviour and entanglement state of PMMA chains in mixed ILs. With increasing DIL content in the mixed ILs
both the terminal relaxation
τ
1
and entanglement relaxation
τ
e
of PMMA chains were retarded
and the entanglement network of the PMMA/ILs becomes more compact
showing higher plateau modulus and greater viscosity. More interaction sites could be formed between PMMA chains and DIL molecules due to its unique double imidazolium rings structure
which results in more cohesive entanglements among PMMA chains and thus restrict their relaxation. Moreover
there is a mathematical relationship between the rheological parameters (such as
τ
1
and
τ
e
) of PMMA/ILs and the viscosity of ILs mixtures
so the rheological behaviour of the system could be approximately predicted. On the other hand
thermal stability
glass transition and ion conductivity of PMMA/ILs were also discussed. The thermal decomposition temperature and glass transition temperature of PMMA/ILs increased with the DIL content
while the ionic conductivity decreased slightly.
混合离子液体聚甲基丙烯酸甲酯缠结松弛
Mixed ionic liquidsPoly(methyl methacrylate)EntanglementRelaxation
Rogers R D, Seddon K R. Science , 2003 . 302 792 - 793 . DOI:10.1126/science.1090313http://doi.org/10.1126/science.1090313 .
Kubisa P. Prog Polym Sci , 2004 . 29 3 - 12 . DOI:10.1016/j.progpolymsci.2003.10.002http://doi.org/10.1016/j.progpolymsci.2003.10.002 .
Hallett, Jason P, Welton T. Chem Rev , 2011 . 111 3508 - 3576 . DOI:10.1021/cr1003248http://doi.org/10.1021/cr1003248 .
Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat Mater , 2009 . 8 621 - 629 . DOI:10.1038/nmat2448http://doi.org/10.1038/nmat2448 .
Zhang S, Zhang Q, Zhang Y, Chen Z, Watanabe M, Deng Y. Prog Polym Sci , 2016 . 77 80 - 124.
Scott M P, Rahman M, Brazel C S. Eur Polym J , 2003 . 39 1947 - 1953 . DOI:10.1016/S0014-3057(03)00129-0http://doi.org/10.1016/S0014-3057(03)00129-0 .
Ueki T, Watanabe M. Macromolecules , 2008 . 41 3739 - 3749 . DOI:10.1021/ma800171khttp://doi.org/10.1021/ma800171k .
Lee H N, Newell N, Bai Z, Lodge T P. Macromolecules , 2012 . 45 3627 - 3633 . DOI:10.1021/ma300335phttp://doi.org/10.1021/ma300335p .
He Y Y, Li Z B, Simone P, Lodge T P. J Am Chem Soc , 2006 . 128 2745 - 2750 . DOI:10.1021/ja058091thttp://doi.org/10.1021/ja058091t .
Xiao Z L, Larson R G, Chen Y L, Zhou C T, Niu Y H, Li G X. Soft Matter , 2016 . 12 7613 - 7625 . DOI:10.1039/C6SM01220Ehttp://doi.org/10.1039/C6SM01220E .
Ueno K, Tokuda H, Watanabe M. Phys Chem Chem Phys , 2010 . 12 1649 - 1958 . DOI:10.1039/b921462nhttp://doi.org/10.1039/b921462n .
Li W, Wu P Y. Soft Matter , 2013 . 9 11585 - 11597 . DOI:10.1039/c3sm51920ahttp://doi.org/10.1039/c3sm51920a .
Ramenskaya L M, Grishina E P. J Mol Liq , 2016 . 218 133 - 137 . DOI:10.1016/j.molliq.2016.02.037http://doi.org/10.1016/j.molliq.2016.02.037 .
Anderson J L, Ding R, Ellern A, Armstrong D W. J Am Chem Soc , 2005 . 127 593 - 604 . DOI:10.1021/ja046521uhttp://doi.org/10.1021/ja046521u .
Patil R A, Talebi M, Xu C, Bhawal S S, Armstrong D W. Chem Mater , 2016 . 28 4315 - 4323 . DOI:10.1021/acs.chemmater.6b01247http://doi.org/10.1021/acs.chemmater.6b01247 .
Sahu P K, Ghosh A, Sarkar M. J Phys Chem B , 2015 . 119 14221 - 14235 . DOI:10.1021/acs.jpcb.5b07357http://doi.org/10.1021/acs.jpcb.5b07357 .
Du L, Geng C, Zhang D, Lan Z, Liu C. J Phys Chem B , 2016 . 120 6721 - 6729 . DOI:10.1021/acs.jpcb.6b04218http://doi.org/10.1021/acs.jpcb.6b04218 .
Ishida T, Shirota H. J Phys Chem B , 2013 . 117 1136 - 1150.
Wang Yifu(王一夫), Wan Heting(万贺廷), Wang Dan(王丹), Wang Jilin(王吉林), Wang Lulu(王璐璐),Feng Ruijiang(封瑞江). Acta Polymerica Sinica(高分子学报) , 2018 . (4) 541 - 552 . DOI:10.11777/j.issn1000-3304.2017.17150http://doi.org/10.11777/j.issn1000-3304.2017.17150 .
Hooshyari K, Javanbakht M, Adibi M. Electrochim Acta , 2016 . 205 142 - 152 . DOI:10.1016/j.electacta.2016.04.115http://doi.org/10.1016/j.electacta.2016.04.115 .
Malham I B, Turmine M. J Chem Thermodyn , 2008 . 40 718 - 723 . DOI:10.1016/j.jct.2007.10.002http://doi.org/10.1016/j.jct.2007.10.002 .
Shirota H, Mandai T, Fukazawa H, Kato T. J Chem Eng Data , 2011 . 56 2453 - 2459 . DOI:10.1021/je2000183http://doi.org/10.1021/je2000183 .
Grunberg L, Nissan A H. Nature , 1949 . 164 799 - 800.
Tsierkezos, Nikos G, Molinou I E. J Chem Eng Data , 1998 . 43 989 - 993 . DOI:10.1021/je9800914http://doi.org/10.1021/je9800914 .
Altin E, Gradl J, Peukert W. Chem Eng Technol , 2006 . 29 1347 - 1354 . DOI:10.1002/ceat.200600135http://doi.org/10.1002/ceat.200600135 .
Okoturo O O, VanderNoot T J. J Electroanal Chem , 2004 . 568 167 - 181 . DOI:10.1016/j.jelechem.2003.12.050http://doi.org/10.1016/j.jelechem.2003.12.050 .
Qian R Y. Macromol Symp , 1977 . 124 ( 1 ): 15 - 26.
Ferry J D. Viscoelastic Properties of Polymers. New York: John Wiley & Sons, 1980. 81 − 82.
Vega J F, Rastogi S, Peters G W M, Meijer H E H. J Rheol , 2004 . 48 663 - 678 . DOI:10.1122/1.1718367http://doi.org/10.1122/1.1718367 .
Lv Y, Wu J, Zhang J, Niu Y, Liu C Y, He J, Zhang J. Polymer , 2012 . 53 2524 - 2531 . DOI:10.1016/j.polymer.2012.03.037http://doi.org/10.1016/j.polymer.2012.03.037 .
Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J L. Polym Degrad Stabil , 2003 . 79 271 - 281 . DOI:10.1016/S0141-3910(02)00291-4http://doi.org/10.1016/S0141-3910(02)00291-4 .
Ohtani H, Ishimura S, Kumai M. Anal Sci , 2008 . 24 1335 - 1340 . DOI:10.2116/analsci.24.1335http://doi.org/10.2116/analsci.24.1335 .
Shaln L B, Gupta H, Singh V K, Singh R K. Electrochim Acta , 2017 . 230 123 - 131 . DOI:10.1016/j.electacta.2017.01.177http://doi.org/10.1016/j.electacta.2017.01.177 .
Endres F, El Abedin S Z. Phys Chem Chem Phys , 2006 . 8 2101 - 2116 . DOI:10.1039/b600519phttp://doi.org/10.1039/b600519p .
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构