浏览全部资源
扫码关注微信
1.山东省高等学校生物基高分子材料重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042
2.青岛科技大学化工学院 青岛 266042
E-mail: shenyong@iccas.ac.cn E-mail: shenyong@iccas.ac.cn
E-mail: zbli@qust.edu.cn E-mail: zbli@qust.edu.cn
纸质出版日期:2020-9-1,
网络出版日期:2020-8-11,
收稿日期:2020-5-9,
扫 描 看 全 文
寇新慧, 沈勇, 李志波. 手性脲/有机碱二元体系协同催化外消旋丙交酯立构选择性开环聚合[J]. 高分子学报, 2020,51(10):1121-1129.
Xin-hui Kou, Yong Shen, Zhi-bo Li. Stereoselective Ring-opening Polymerization of
寇新慧, 沈勇, 李志波. 手性脲/有机碱二元体系协同催化外消旋丙交酯立构选择性开环聚合[J]. 高分子学报, 2020,51(10):1121-1129. DOI: 10.11777/j.issn1000-3304.2020.20117.
Xin-hui Kou, Yong Shen, Zhi-bo Li. Stereoselective Ring-opening Polymerization of
聚乳酸是应用广泛的可降解高分子材料,由于主链重复单元含有手性中心,它的物理与力学性能与其立构规整度密切相关. 丙交酯的开环聚合是制备聚乳酸的重要手段. 除了具有手性中心的金属有机催化剂,手性有机催化剂在丙交酯立构选择性开环聚合中受到越来越多的关注. 本文中,我们用L-苯丙氨酸甲酯(L-Phe-OMe)、L-丙氨酸甲酯(L-Ala-OMe)以及L-缬氨酸甲酯(L-Val-OMe)分别与4-三氟甲基苯异氰酸酯反应得到3种含手性中心的脲(L-Phe-U,L-Ala-U以及L-Val-U). 这些手性脲与有机碱1
8-二氮杂二环十一碳-7-烯(DBU)形成的二元催化体系可以在常温下催化外消旋丙交酯(
rac
-LA)立构选择性开环聚合,制备具有高立构规整度的聚乳酸(
P
m
= 0.87). 进一步降低聚合温度可以提高聚乳酸的立构规整度,在−20 °C时
P
m
高达0.90. 通过
1
H同核去耦谱分析发现,
rac
-LA在开环聚合过程中同时存在增长链末端控制机理以及催化剂活性中心控制机理,研究表明增长链末端控制机理对立构规整度的影响随聚合温度降低而增加.
Poly(lactic acid)
as a kind of biocompatible and degradable polymer
has considerable potential in a wide range of applications. Because the main chain repeating unit has a chiral center
its physical and mechanical properties are closely related to its stereoregularity. In recent years
chiral organocatalysts have attracted increasing attention in stereoselective ring-opening polymerization (ROP) of lactide in addition to organometallic catalysts with chiral centers. In this contribution
we synthesized three types of chiral ureas (L-Phe-U
L-Ala-U and L-Val-U)
which were prepared by reactions of L-Phenylalanine methyl ester (L-Phe-OMe)
L-alanine methyl ester (L-Ala-OMe) and L-valine methyl ester (L-Val-OMe) with 4-(trifluoromethyl)phenyl isocyanate. They can form binary catalytic system with DBU
which can catalyze the stereoselective ROP of
rac
-lactide (
rac
-LA) to produce stereoblock PLA (
P
m
up to 0.87) at room temperature. In addition
the stereoregularity (
P
m
) can be improved by reducing the polymerization temperature with regularity as high as 0.90 at −20 °C. Using
1
H homonuclear decoupling spectroscopy
it was found that the contribution of chain-end control mechanism to stereo-regularity increased with decreasing temperature.
聚乳酸有机催化剂开环聚合立构选择性
Poly(lactic acid)OrganocatalystRing opening polymerizationStereoselectivity
Sinharay S, Bousmina M. Prog Mater Sci , 2005 . 50 ( 8 ): 962 - 1079 . DOI:10.1016/j.pmatsci.2005.05.002http://doi.org/10.1016/j.pmatsci.2005.05.002 .
Chiellini E, Solaro R. Adv Mater , 1996 . 8 ( 4 ): 305 - 313 . DOI:10.1002/adma.19960080406http://doi.org/10.1002/adma.19960080406 .
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军) , Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 1068 - 1082 . DOI:10.11777/j.issn1000-3304.2019.19124http://doi.org/10.11777/j.issn1000-3304.2019.19124 .
Wang Ziyu(王子羽) He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘) , Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报) , 2018 . ( 7 ): 786 - 796 . DOI:10.11777/j.issn1000-3304.2018.18036http://doi.org/10.11777/j.issn1000-3304.2018.18036 .
An Zesheng(安泽胜), Chen Changle(陈昶乐), He Junpo(何军坡), Hong Chunyan(洪春雁), Li Zhibo(李志波), Li Zichen(李子臣), Liu Chao(刘超), Lv Xiaobing(吕小兵), Qin Anjun(秦安军), Qu Chengke(曲程科), Tang Benzhong(唐本忠), Tao Youhua(陶友华), Wan Xinhua(宛新华), Wang Guowei(王国伟), Wang Jia(王佳), Zheng Ke(郑轲), Zou Wenkai(邹文凯). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 1083 - 1132 . DOI:10.11777/j.issn1000-3304.2019.19136http://doi.org/10.11777/j.issn1000-3304.2019.19136 .
Farah S, Anderson D G, Langer R. Adv Drug Deliv Rev , 2016 . 107 367 - 392 . DOI:10.1016/j.addr.2016.06.012http://doi.org/10.1016/j.addr.2016.06.012 .
Auras R, Harte B, Selke S. Macromol Biosci , 2004 . 4 ( 9 ): 835 - 864 . DOI:10.1002/mabi.200400043http://doi.org/10.1002/mabi.200400043 .
Rasal R M, Janorkar A V, Hirt D E. Prog Polym Sci , 2010 . 35 ( 3 ): 338 - 356 . DOI:10.1016/j.progpolymsci.2009.12.003http://doi.org/10.1016/j.progpolymsci.2009.12.003 .
Bandelli D, Alex J, Weber C, Schubert U S. Macromol Rapid Commun , 2019 . 41 ( 1 ): 1900560 .
Tsuji H, Ikada Y. Polymer , 1999 . 40 ( 24 ): 6699 - 6708 . DOI:10.1016/S0032-3861(99)00004-Xhttp://doi.org/10.1016/S0032-3861(99)00004-X .
Tsuji H, Hyon S H, Ikada Y. Macromolecules , 1991 . 24 ( 20 ): 5657 - 5662 . DOI:10.1021/ma00020a027http://doi.org/10.1021/ma00020a027 .
Düşkünkorur H Ö, Bégué A, Pollet E, Phalip V, Güvenilir Y, Avérous L. J Mol Catal B: Enzym , 2015 . 115 20 - 28 . DOI:10.1016/j.molcatb.2015.01.011http://doi.org/10.1016/j.molcatb.2015.01.011 .
Thomas C M. Chem Soc Rev , 2010 . 39 ( 1 ): 165 - 173 . DOI:10.1039/B810065Ahttp://doi.org/10.1039/B810065A .
Jensen T R, Breyfogle L E, Hillmyer M A, Tolman W B. Chem Commun , 2004 . 21 2504 - 2505.
Luo W, Shi T, Liu S, Zuo W, Li Z. Organometallics , 2017 . 36 ( 9 ): 1736 - 1742 . DOI:10.1021/acs.organomet.7b00106http://doi.org/10.1021/acs.organomet.7b00106 .
Shi T, Luo W, Liu S, Li Z. J Polym Sci, Part A: Polym Chem , 2018 . 56 ( 6 ): 611 - 617 . DOI:10.1002/pola.28932http://doi.org/10.1002/pola.28932 .
Praban S, Piromjitpong P, Balasanthiran V, Jayaraj S, Chisholm M H, Tantirungrotechai J, Phomphrai K. Dalton Trans , 2019 . 48 ( 10 ): 3223 - 3230 . DOI:10.1039/C8DT04699Ahttp://doi.org/10.1039/C8DT04699A .
Dove A P, Li H, Pratt R C, Lohmeijer B G, Culkin D A, Waymouth R M, Hedrick J L. Chem Commun , 2006 . ( 27 ): 2881 - 2883 . DOI:10.1039/b601393ghttp://doi.org/10.1039/b601393g .
Li H, Ai B R, Hong M. Chinese J Polym Sci , 2018 . 36 ( 2 ): 231 - 236 . DOI:10.1007/s10118-018-2071-5http://doi.org/10.1007/s10118-018-2071-5 .
Zhang L, Nederberg F, Messman J M, Pratt R C, Hedrick J L, Wade C G. J Am Chem Soc , 2007 .129 ( 42 ): 12610 - 12611 . DOI:10.1021/ja074131chttp://doi.org/10.1021/ja074131c .
Liu S, Li H, Zhao N, Li Z. ACS Macro Letters , 2018 . 7 ( 6 ): 624 - 628 . DOI:10.1021/acsmacrolett.8b00353http://doi.org/10.1021/acsmacrolett.8b00353 .
Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R. Macromolecules , 1992 . 25 ( 16 ): 4114 - 4118 . DOI:10.1021/ma00042a011http://doi.org/10.1021/ma00042a011 .
Garlotta D. J Polym Environ , 2001 . 9 ( 2 ): 63 - 84 . DOI:10.1023/A:1020200822435http://doi.org/10.1023/A:1020200822435 .
Coulembier O, Dove A P, Pratt R C, Sentman A C, Culkin D A, Mespouille L, Dubois P, Waymouth R M, Hedrick J L. Angew Chem Int Ed Engl , 2005 . 44 ( 31 ): 4964 - 4968 . DOI:10.1002/anie.200500723http://doi.org/10.1002/anie.200500723 .
Makiguchi K, Yamanaka T, Kakuchi T, Terada M, Satoh T. Chem Commun , 2014 . 50 ( 22 ): 2883 - 2885 . DOI:10.1039/C4CC00215Fhttp://doi.org/10.1039/C4CC00215F .
Zhu J B, Chen E Y X. J Am Chem Soc , 2015 . 137 ( 39 ): 12506 - 12509 . DOI:10.1021/jacs.5b08658http://doi.org/10.1021/jacs.5b08658 .
Sanchez-Sanchez A, Rivilla I, Agirre M, Basterretxea A, Etxeberria A, Veloso A, Sardon H, Mecerreyes D, Cossío F P. J Am Chem Soc , 2017 . 139 ( 13 ): 4805 - 4814 . DOI:10.1021/jacs.6b13080http://doi.org/10.1021/jacs.6b13080 .
Orhan B, Tschan M J L, Wirotius A-L, Dove A P, Coulembier O, Taton D. ACS Macro Letters , 2018 . 7 ( 12 ): 1413 - 1419 . DOI:10.1021/acsmacrolett.8b00852http://doi.org/10.1021/acsmacrolett.8b00852 .
Lv C, Zhou L, Yuan R, Mahmood Q, Xu G, Wang Q. New J Chem , 2020 . 44 ( 4 ): 1648 - 1655 . DOI:10.1039/C9NJ05074Dhttp://doi.org/10.1039/C9NJ05074D .
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem , 2016 . 8 ( 11 ): 1047 - 1053 . DOI:10.1038/nchem.2574http://doi.org/10.1038/nchem.2574 .
Lin B, Waymouth R M. J Am Chem Soc , 2017 . 139 ( 4 ): 1645 - 1652 . DOI:10.1021/jacs.6b11864http://doi.org/10.1021/jacs.6b11864 .
Lin B, Waymouth R M. Macromolecules , 2018 . 51 ( 8 ): 2932 - 2938 . DOI:10.1021/acs.macromol.8b00540http://doi.org/10.1021/acs.macromol.8b00540 .
Jiang Z L, Zhao J P, Zhang G Z. Chinese J Polym Sci , 2019 . 37 ( 12 ): 1205 - 1214 . DOI:10.1007/s10118-019-2285-1http://doi.org/10.1007/s10118-019-2285-1 .
Coudane J, Ustariz-Peyret C, Schwach G, Vert M. J Polym Sci, Part A: Polym Chem , 1997 . 35 ( 9 ): 1651 - 1658 . DOI:10.1002/(sici)1099-0518(19970715)35:9<1651::aid-pola6>3.0.co;2-uhttp://doi.org/10.1002/(sici)1099-0518(19970715)35:9<1651::aid-pola6>3.0.co;2-u .
Kazakov O I, Datta P P, Isajani M, Kiesewetter E T, Kiesewetter M K. Macromolecules , 2014 . 47 ( 21 ): 7463 - 7468 . DOI:10.1021/ma501847xhttp://doi.org/10.1021/ma501847x .
Pratt R C, Lohmeijer B G G, Long D A, Lundberg P N P, Dove A P, Li H, Wade C G, Waymouth R M, Hedrick J L. Macromolecules , 2006 . 39 ( 23 ): 7863 - 7871 . DOI:10.1021/ma061607ohttp://doi.org/10.1021/ma061607o .
Kan Z, Luo W, Shi T, Wei C, Han B, Zheng D, Liu S. Front Chem , 2018 . 6 547 - 555 . DOI:10.3389/fchem.2018.00547http://doi.org/10.3389/fchem.2018.00547 .
Chisholm M H. Pure Appl Chem , 2010 . 82 ( 8 ): 1647 - 1662 . DOI:10.1351/PAC-CON-09-09-24http://doi.org/10.1351/PAC-CON-09-09-24 .
Chamberlain B M, Cheng M, Moore D R, Ovitt T M, Lobkovsky E B, Coates G W. J Am Chem Soc , 2001 . 123 ( 14 ): 3229 - 3238 . DOI:10.1021/ja003851fhttp://doi.org/10.1021/ja003851f .
Ovitt T M, Coates G W. J Am Chem Soc , 2002 . 124 ( 7 ): 1316 - 1326 . DOI:10.1021/ja012052+http://doi.org/10.1021/ja012052+ .
Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed , 2017 . 56 12987 - 12990 . DOI:10.1002/anie.201707122http://doi.org/10.1002/anie.201707122 .
Kaljurand I, Kütt A, Sooväli L, Rodima T, Mäemets V, Leito I, Koppel I A. J Org Chem , 2005 . 70 ( 3 ): 1019 - 1028 . DOI:10.1021/jo048252whttp://doi.org/10.1021/jo048252w .
0
浏览量
63
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构