浏览全部资源
扫码关注微信
1.华南理工大学 机械与汽车工程学院
2.South China University of Technology, Guangzhou 510640 School of Materials Science and Engineering,
E-mail: caoxd@scut.edu.cn E-mail: caoxd@scut.edu.cn
E-mail: cyk@scut.edu.cn E-mail: cyk@scut.edu.cn
纸质出版日期:2020-8,
网络出版日期:2020-7-18,
收稿日期:2020-5-11,
修回日期:2020-6-1,
扫 描 看 全 文
龚舟, 彭涛, 曹黎明, 曹晓东, 陈玉坤. 基于天甲橡胶的高性能生物基弹性体制备及性能研究[J]. 高分子学报, 2020,51(8):949-958.
Zhou Gong, Tao Peng, Li-ming Cao, Xiao-dong Cao, Yu-kun Chen. Preparation and Properties of High Performance Bio-based Elastomer Based on Methyl Methacrylate Grafted Natural Rubber[J]. Acta Polymerica Sinica, 2020,51(8):949-958.
龚舟, 彭涛, 曹黎明, 曹晓东, 陈玉坤. 基于天甲橡胶的高性能生物基弹性体制备及性能研究[J]. 高分子学报, 2020,51(8):949-958. DOI: 10.11777/j.issn1000-3304.2020.20118.
Zhou Gong, Tao Peng, Li-ming Cao, Xiao-dong Cao, Yu-kun Chen. Preparation and Properties of High Performance Bio-based Elastomer Based on Methyl Methacrylate Grafted Natural Rubber[J]. Acta Polymerica Sinica, 2020,51(8):949-958. DOI: 10.11777/j.issn1000-3304.2020.20118.
天甲橡胶(MGNR)是生物基高分子材料天然橡胶(NR)的一种改性产品,较高的门尼黏度导致MGNR作为橡胶制品主要成分的研究鲜见报道. 本文将极性的MGNR与非极性的NR并用,NR分子链较高的柔顺性使MGNR的门尼黏度得到有效降低,改善了MGNR的加工性能. 进而添加表面具有硅羟基的气相法白炭黑,一方面,白炭黑与MGNR、NR形成结合胶;另一方面,白炭黑表面的硅羟基与MGNR的侧链甲基丙烯酸甲酯形成较强的相互作用,白炭黑作为“桥梁”改善了MGNR与NR之间的相容性. 随着白炭黑含量的提高,MGNR/NR(40/60)硫化胶的拉伸强度与断裂伸长率均逐渐增大. 当白炭黑的填充量为10 phr时,硫化胶的拉伸强度为31.2 MPa,断裂伸长率为605%. 相比于未填充白炭黑的硫化胶分别提高了42.4%和28.9%,相比于纯MGNR分别提高了55.2%和93.9%.
Methyl methacrylate grafted natural rubber (MGNR) is one of the modified products of biology-based natural rubber (NR). The relatively high Mooney viscosity of pure MGNR restrict its applications. Thus
it is rarely reported as the main component of rubber products. In this paper
polar MGNR and non-polar NR were blended. The high flexibility of NR molecular chains effectively reduces the Mooney viscosity of MGNR
improving the processability of MGNR. Besides
fumed silica with Si―OH on its surface was added. On the one hand
silica forms bonded rubber with MGNR and NR chains. On the other hand
Si―OH on the surface of fumed silica interacts strongly with methyl methacrylate grafted on MGNR
and silica acts as a “bridge” to improve the compatibility between MGNR and NR. As the content of fumed silica increased
the tensile strength and elongation at break of MGNR/NR (40/60) blend gradually improved. When the content of fumed silica was 10 phr
the tensile strength of the blend was 31.2 MPa
which improved by 42.4% and 55.2% compared with those of the blend without fumed silica and the pure MGNR
respectively. Meanwhile
the elongation at break of the blend was 605%
raised by 28.9% and 93.9% compared with those of the blend without fumed silica and the pure MGNR.
天甲橡胶天然橡胶加工性能相容性
Methyl methacrylate grafted natural rubberNatural rubberProcessing performanceCompatibility
Zhou Y C, Hu C Y, Zhang T H, Xu X W, Duan R L, Luo Y, Sun Z Q, Pang X, Chen X S. Macromolecules , 2019 . 52 3462 - 3470 . DOI:10.1021/acs.macromol.9b00001http://doi.org/10.1021/acs.macromol.9b00001 .
Huang J R, Fan J F, Cao L M, Xu C H, Chen Y K. Chem Eng J , 2020 . 385 123828 .
Huang J R, Fan J F, Yuan D S, Zhang S D, Chen Y K. Ind Eng Chem Res , 2020 . 59 9950 - 9958 . DOI:10.1021/acs.iecr.0c00035http://doi.org/10.1021/acs.iecr.0c00035 .
Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报) , 2016 . ( 9 ): 1151 - 1159 . DOI:10.11777/j.issn1000-3304.2016.16130http://doi.org/10.11777/j.issn1000-3304.2016.16130 .
Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc , 2016 . 138 10995 - 11000 . DOI:10.1021/jacs.6b05413http://doi.org/10.1021/jacs.6b05413 .
Li X Y, Zhou Q, Wen Z B, Hui Y, Yang K K, Wang Y Z. Polym Degrad Stab , 2015 . 121 253 - 260 . DOI:10.1016/j.polymdegradstab.2015.09.016http://doi.org/10.1016/j.polymdegradstab.2015.09.016 .
Liu W, Tian G Q, Yang D D, Wu G, Chen S C, Wang Y Z. Polym Chem , 2019 . 10 1526 - 1536 . DOI:10.1039/C9PY00111Ehttp://doi.org/10.1039/C9PY00111E .
Chen Y, Nie J, Xu C, Wu W, Zheng Z. ACS Sustain Chem Eng , 2020 . 8 ( 2 ): 1285 - 1294.
Cai J, Zhang L. Biomacromolecules , 2006 . 7 ( 1 ): 183 - 189 . DOI:10.1021/bm0505585http://doi.org/10.1021/bm0505585 .
Cao L, Yuan D, Xu C, Chen Y. Nanoscale , 2017 . 9 15696 - 15706 . DOI:10.1039/C7NR05011Ahttp://doi.org/10.1039/C7NR05011A .
Lei W W, Russell T P, Hu L, Zhou X X, Qiao H, Wang W C, Wang R G, Zhang L Q. ACS Sustain Chem Eng , 2017 . 5 5214 - 5223 . DOI:10.1021/acssuschemeng.7b00574http://doi.org/10.1021/acssuschemeng.7b00574 .
Qiao H, Wang R G, Yao H, Zhou X X, Lei W W, Hu X R, Zhang L Q. Polym Chem , 2015 . 6 ( 34 ): 6140 - 6151 . DOI:10.1039/C5PY00720Hhttp://doi.org/10.1039/C5PY00720H .
Cai J, Zhang L, Liu S, Liu Y T, Xu X H J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Macromolecules , 2008 . 41 ( 23 ): 9345 - 9351 . DOI:10.1021/ma801110ghttp://doi.org/10.1021/ma801110g .
Wang S, Lu A, Zhang L. Prog Polym Sci , 2016 . 53 169 - 206 . DOI:10.1016/j.progpolymsci.2015.07.003http://doi.org/10.1016/j.progpolymsci.2015.07.003 .
Cao X, Dong H, Li C. Biomacromolecules , 2007 . 8 ( 3 ): 899 - 904.
Cao L M, Cheng Z Z, Yan M W, Chen Y K. Chem Eng J , 2019 . 36 203 - 212.
Wu W, Xu C, Zheng Z, Lin B, Fu L. J Mater Chem A , 2019 . 7 ( 12 ): 6901 - 6910.
Han J, Zhang Y, Wu C, Xie L. J Macromol Sci B , 2015 . 54 ( 4 ): 401 - 410.
He X, Zhang Y, Wu C, Liu B. J Macromol Sci B , 2017 . 56 ( 10 ): 762 - 774.
Zhong B, Jia Z, Luo Y, Guo B, Jia D. Compos Part A-Appl S , 2015 . 73 63 - 71.
Yang Z, Liu H, Wu S, Tang Z, Guo B, Zhang L. Chem Eng J , 2018 . 342 112 - 119.
Xiang Hongping(向洪平), Rong Minzhi(容敏智), Zhang Minqqiu(章明秋). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1130 - 1140 . DOI:10.11777/j.issn1000-3304.2017.17016http://doi.org/10.11777/j.issn1000-3304.2017.17016 .
Xu C, Cao L, Lin B, Liang X, Chen Y. ACS Appl Mater Interface , 2016 . 8 ( 27 ): 17728 - 17737.
Payne A, Whittaker R. Rubber Chem Technol , 1971 . 44 ( 2 ): 440 - 478 . DOI:10.5254/1.3547375http://doi.org/10.5254/1.3547375 .
Thiraphattaraphun L, Kiatkamjornwong S, Prasassarakich P, Damronglerd S. J Appl Polym Sci , 2001 . 81 ( 2 ): 428 - 439.
Mussett F, Wood. Rubber Chem Technol , 1956 . 29 706 DOI:10.5254/1.3542584http://doi.org/10.5254/1.3542584 .
Swift P. App Chem , 1958 . 8 803 .
Cooper W, Fielden M. J Polym Sci , 1958 . 28 ( 117 ): 442 DOI:10.1002/pol.1958.1202811726http://doi.org/10.1002/pol.1958.1202811726 .
Cooper W, Vangham G, Miller S. J Polym Sci , 1959 . 34 ( 127 ): 651 DOI:10.1002/pol.1959.1203412743http://doi.org/10.1002/pol.1959.1203412743 .
Takahashi H, Ikeda K. Japan patent, JP 09 217 048. 1996-02-08
Whba R, TianKhoon L, Su’ait M, Rahman M, Ahmad A. Arab J Chem , 2020 . 13 ( 1 ): 3351 - 3361.
Zainal N, Hein M, Abetz V, Ali A, Chan C. Macromol Symp , 2018 . 382 ( 1 ): 1022 - 1360.
Sun Long(孙龙), Zhang Huifeng(张会丰), Luo Mingchao(罗明超), Liao Shuangquan(廖双泉). Journal of Functional Materials(功能材料) , 2019 . 50 ( 4 ): 04114 - 04119.
TianKhoon L, Ataollahi N, Hassan N H, Ahmad A. J Solid State Electr , 2016 . 20 ( 1 ): 203 - 213.
Arayapranee W, Prasassarakich P, Rempel G L. J Appl Polym Sci , 2004 . 93 ( 4 ): 1666 - 1672.
Rezaifard A, Hodd K, Tod D. Int J Adhes , 1994 . 14 ( 2 ): 153 DOI:10.1016/0143-7496(94)90011-6http://doi.org/10.1016/0143-7496(94)90011-6 .
Salaeh S, Banda T, Pongdong V, Wiessner S, Das A, Thitithammawong A. Eur Polym J , 2018 . 107 132 - 142.
Chen Y, Wang W, Yuan D, Xu C, Cao L, Liang X. ACS Sustain Chem Eng , 2018 . 6 ( 5 ): 6488 .
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构