浏览全部资源
扫码关注微信
1.教育部功能高分子材料重点实验室 南开大学物理科学学院 天津 300071
2.Department of Chemical and Biological Engineering, Colorado State University, USA CO 80523-1370
E-mail: baohui@nankai.edu.cn Bao-hui Li, E-mail: baohui@nankai.edu.cn
纸质出版日期:2021-1-3,
网络出版日期:2020-8-25,
收稿日期:2020-5-12,
修回日期:2020-6-3,
扫 描 看 全 文
张景雪, 吴佳坪, 王强, 李宝会. 受限于两平行板间的对称星形共聚物A
Jing-xue Zhang, Jia-ping Wu, Qiang Wang, Bao-hui Li. Lattice Self-consistent Field Calculations of Phase Behavior of Symmetric Star Block Copolymers A
张景雪, 吴佳坪, 王强, 李宝会. 受限于两平行板间的对称星形共聚物A
Jing-xue Zhang, Jia-ping Wu, Qiang Wang, Bao-hui Li. Lattice Self-consistent Field Calculations of Phase Behavior of Symmetric Star Block Copolymers A
采用格子自洽场理论计算研究了受限于2个平行板间的对称星形共聚物A
m
B
m
(
m
= 1,2,3,4,5)熔体形成的层状相结构. 在给定的相互作用下(
χN
AB
不变,
χ
为Flory-Huggins相互作用参数,
N
AB
= (
N
− 1)/
m
为单个聚合物分子中一对AB臂的总链节数目),针对平行板间距为体相周期的情况,系统考察了共聚物链长
N
和单个聚合物分子中A(或B)臂数目
m
对受限层结构细节及层取向的影响. 由计算结果,当
N
或
N
AB
不变时,受限层的归一化界面宽度随
m
的增大而减小. 受限板为中性时,垂直层结构的单链自由能比平行层结构的低. 随着板对共聚物中一种嵌段的选择作用
Λ
的增大,体系发生垂直层到平行层的转变,该转变为一阶相变. 当
m
不变时,
N
越小,上述转变出现在越大的
Λ
值处,体系越容易保持垂直层结构. 并且
N
越小,层状结构周期越小. 当
N
或
N
AB
不变时,
m
越大体系越容易保持垂直层结构. 总之,星形共聚物的链长越短、臂数越多时,垂直层稳定的
Λ
区间越大、层状结构的界面宽度越小. 这些结论可以指导刻蚀应用中对体系参数的选择.
We studied the lamellar structures formed by incompressible melts of symmetric star block copolymer (BCP) A
m
B
m
confined between two identical
homogeneous and parallel surfaces with their separation equal to the bulk lamellar period
using the self-consistent field calculations on a simple cubic lattice. All the star BCPs have the same
χN
AB
value
where
χ
is the Flory-Huggins parameter characterizing the repulsion between two nearest-neighbor A and B segments
and
N
AB
is the number of segments on one pair of A- and B-arms. The effects of total chain length
N
and the number of A or B arms
m
in each A
m
B
m
chain on the lamellar structure and orientation were investigated in detail. We found that the normalized A-B interfacial widths of the confined lamellae increase with decreasing
m
at fixed
N
or
N
AB
= (
N
− 1)/
m
. The calculated Helmholtz free energy per chain shows that perpendicular lamellae are stable over parallel lamellae when the two confining surfaces are neutral. As the surface preference
Λ
(
e.g.
for B-segments) increases
all systems exhibit a first-order phase transition from perpendicular to parallel lamellae. At a fixed
m
value
the star BCPs with smaller
N
have larger
Λ
range to form perpendicular lamellae. At a fixed
N
(or
N
AB
)
the star BCPs with larger
m
have larger
Λ
range to form perpendicular lamellae. These findings may provide useful information for the lithographic applications of BCPs.
星形共聚物格子自洽场理论平行板受限层状结构
Star block copolymersLattice self-consistent field theoryConfined between two parallel surfacesLamellar phase
Albert J N, Epps III T H. Mater Today , 2010 . 13 24 - 33.
Li W, Müller M. Prog Polym Sci , 2016 . 54 47 - 75.
Müller B P. Eur Polym J , 2016 . 81 470 - 493 . DOI:10.1016/j.eurpolymj.2016.04.007http://doi.org/10.1016/j.eurpolymj.2016.04.007 .
Posselt D, Zhang J, Smilgies D M, Berezkin A V, Potemkin I I, Papadakis C M. Prog Polym Sci , 2017 . 66 80 - 115 . DOI:10.1016/j.progpolymsci.2016.09.009http://doi.org/10.1016/j.progpolymsci.2016.09.009 .
Wu W, Wang W, Li J. Prog Polym Sci , 2015 . 46 55 - 85 . DOI:10.1016/j.progpolymsci.2015.02.002http://doi.org/10.1016/j.progpolymsci.2015.02.002 .
Park J, Jang S, Kim J K. J Polym Sci, Part B: Polym Phys , 2015 . 53 1 - 21.
Wang H S, Kim K H, Bang J. Macromol Rapid Commun , 2019 . 40 e1800728 DOI:10.1002/marc.201800728http://doi.org/10.1002/marc.201800728 .
Kellogg G J, Walton D G, Mayes A M, Lambooy P, Russell T P, Gallagher P D, Satija S K. Phys Rev Lett , 1996 . 76 2503 - 2506 . DOI:10.1103/PhysRevLett.76.2503http://doi.org/10.1103/PhysRevLett.76.2503 .
Durand W J, Blachut G, Maher M J, Sirard S, Tein S, Carlson M C, Asano Y, Zhou S X, Lane A P, Bates C M, Ellison C J, Willson C G. J Polym Sci, Part A: Polym Chem , 2015 . 53 344 - 352 . DOI:10.1002/pola.27370http://doi.org/10.1002/pola.27370 .
Durand W J, Carlson M C, Maher M J, Blachut G, Santos L J, Tein S, Ganesan V, Ellison C J, Willson C G. Macromolecules , 2015 . 49 308 - 316.
Maher M J, Bates C M, Blachut G, Sirard S, Self J L, Carlson M C, Dean L M, Cushen J D, Durand W J, Hayes C O, Ellison C J, Willson C G. Chem Mater , 2014 . 26 1471 - 1479 . DOI:10.1021/cm403813qhttp://doi.org/10.1021/cm403813q .
Pickett G T, Balazs A C. Macromolecules , 1997 . 30 3097 - 3103 . DOI:10.1021/ma9617173http://doi.org/10.1021/ma9617173 .
Meng D, Wang Q. J Chem Phys , 2007 . 126 234902 DOI:10.1063/1.2740633http://doi.org/10.1063/1.2740633 .
Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P. Macromolecules , 1994 . 27 6225 - 6228 . DOI:10.1021/ma00099a045http://doi.org/10.1021/ma00099a045 .
Wang Q, Yan Q, Nealey P F, de Pablo J J. J Chem Phys , 2000 . 112 450 - 464 . DOI:10.1063/1.480639http://doi.org/10.1063/1.480639 .
Sommer J U, Hoffmann A, Blumen A. J Chem Phys , 1999 . 111 3728 - 3732 . DOI:10.1063/1.479653http://doi.org/10.1063/1.479653 .
Yin Y, Sun P, Chen T, Li B, Jin Q, Ding D, Shi A C. Chem Phys Chem , 2004 . 5 540 - 548 . DOI:10.1002/cphc.200300999http://doi.org/10.1002/cphc.200300999 .
Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报) , 2017 . ( 11 ): 1841 - 1850 . DOI:10.11777/j.issn1000-3304.2017.17031http://doi.org/10.11777/j.issn1000-3304.2017.17031 .
Bates C M, Seshimo T, Maher M J, Durand W J, Cushen J D, Dean L M, Blachut G, Ellison C J, Willson C G. Science , 2012 . 338 775 - 779 . DOI:10.1126/science.1226046http://doi.org/10.1126/science.1226046 .
Lambooy P, Russell T P, Kellogg G J, Mayes A M, Gallagher P D, Satija S K. Phys Rev Lett , 1994 . 72 2899 - 2902 . DOI:10.1103/PhysRevLett.72.2899http://doi.org/10.1103/PhysRevLett.72.2899 .
Russell T P, Lambooy P, Kellogg G J, Mayes A M. Physica B: Condens Matter , 1995 . 213-214 22 - 25 . DOI:10.1016/0921-4526(95)00053-Chttp://doi.org/10.1016/0921-4526(95)00053-C .
Koneripalli N, Singh N, Levicky R, Bates F S, Gallagher P D, Satija S K. Macromolecules , 1995 . 28 2897 - 2904 . DOI:10.1021/ma00112a041http://doi.org/10.1021/ma00112a041 .
Shull K R. Macromolecules , 1992 . 25 2122 - 2133 . DOI:10.1021/ma00034a010http://doi.org/10.1021/ma00034a010 .
Geisinger T, Müller M, Binder K. J Chem Phys , 1999 . 111 5241 - 5250 . DOI:10.1063/1.479778http://doi.org/10.1063/1.479778 .
Takahashi H, Laachi N, Delaney K T, Hur S M, Weinheimer C J, Shykind D, Fredrickson G H. Macromolecules , 2012 . 45 6253 - 6265 . DOI:10.1021/ma300993xhttp://doi.org/10.1021/ma300993x .
Kikuchi M, Binder K. Eur Phys Lett , 1993 . 21 427 - 432 . DOI:10.1209/0295-5075/21/4/008http://doi.org/10.1209/0295-5075/21/4/008 .
Segalman R A. Mater Sci Eng R Rep , 2005 . 48 191 - 226 . DOI:10.1016/j.mser.2004.12.003http://doi.org/10.1016/j.mser.2004.12.003 .
Isono T, Kawakami N, Watanabe K, Yoshida K, Otsuka I, Mamiya H, Ito H, Yamamoto T, Tajima K, Borsali R, Satoh T. Polym Chem , 2019 . 10 1119 - 1129 . DOI:10.1039/C8PY01745Jhttp://doi.org/10.1039/C8PY01745J .
Johnson J, Allgaier J, Wright S, Young R, Buzza M, McLeish T. J Chem Soc, Faraday Trans , 1995 . 91 2403 - 2409 . DOI:10.1039/FT9959102403http://doi.org/10.1039/FT9959102403 .
Beyer F L, Gido S P, Poulos Y, Avgeropoulos A, Hadjichristidis N. Macromolecules , 1997 . 30 2373 - 2376 . DOI:10.1021/ma961855shttp://doi.org/10.1021/ma961855s .
Turner C M, Sheller N B, Foster M D, Lee B, Corona-Galvan S, Quirk R P, Annís B, Lin J S. Macromolecules , 1998 . 31 4372 - 4375 . DOI:10.1021/ma980218uhttp://doi.org/10.1021/ma980218u .
de La Cruz M O, Sanchez I C. Macromolecules , 1986 . 19 2501 - 2508 . DOI:10.1021/ma00164a008http://doi.org/10.1021/ma00164a008 .
Buzza D, Hamley I, Fzea A, Moniruzzaman M, Allgaier J, Young R, Olmsted P, McLeish T. Macromolecules , 1999 . 32 7483 - 7495 . DOI:10.1021/ma9904060http://doi.org/10.1021/ma9904060 .
Buzza D M A, Fzea A H, Allgaier J B, Young R N, Hawkins R J, Hamley I W, McLeish T C B, Lodge T P. Macromolecules , 2000 . 33 8399 - 8414 . DOI:10.1021/ma000382thttp://doi.org/10.1021/ma000382t .
Beyer F L, Gido S P, Uhrig D, Mays J W, Tan N B, Trevino S F. J Polym Sci, Part B: Polym Phys , 1999 . 37 3392 - 3400 . DOI:10.1002/(SICI)1099-0488(19991215)37:24<3392::AID-POLB2>3.0.CO;2-Ahttp://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3392::AID-POLB2>3.0.CO;2-A .
Zhu Y, Gido S P, Moshakou M, Iatrou H, Hadjichristidis N, Park S, Chang T. Macromolecules , 2003 . 36 5719 - 5724 . DOI:10.1021/ma030254fhttp://doi.org/10.1021/ma030254f .
Matsen M W, Gardiner J M. J Chem Phys , 2000 . 113 1673 - 1676 . DOI:10.1063/1.481967http://doi.org/10.1063/1.481967 .
Jung S, Kim J, Lee H, Higashihara T, Kim Y Y, Rho Y, Hirao A, Ree M. Sci Adv Mater , 2014 . 6 2317 - 2324 . DOI:10.1166/sam.2014.2231http://doi.org/10.1166/sam.2014.2231 .
Zhang J, Wu J, Jiang R, Wang Z, Yin Y, Li B, Wang Q. Soft Matter , 2020 . 16 4311 - 4323 . DOI:10.1039/D0SM00293Chttp://doi.org/10.1039/D0SM00293C .
Fleer G, Stuart M C, Scheutjens J M, Cosgrove T, Vincent B. Polymers at interfaces. Springer Science & Business Media 1993. 100 − 232
Hubbard J. Phys Rev Lett , 1959 . 3 77 - 78 . DOI:10.1103/PhysRevLett.3.77http://doi.org/10.1103/PhysRevLett.3.77 .
Fredrickson G. The Equilibrium Theory of Inhomogeneous Polymers. Oxford: Oxford University Press on Demand, 2006
Fisher M E, Wiodm B. J Chem Phys , 1969 . 50 3756 - 3772 . DOI:10.1063/1.1671624http://doi.org/10.1063/1.1671624 .
0
浏览量
30
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构