浏览全部资源
扫码关注微信
四川大学化学学院 环境与火安全高分子材料协同创新中心 环保型高分子材料国家地方联合工程实验室高分子材料工程国家重点实验室 成都 610064
E-mail: L.Chen.SCU@gmail.com Li Chen, E-mail: L.Chen.SCU@gmail.com
E-mail: yzwang@scu.edu.cn Yu-zhong Wang, E-mail: yzwang@scu.edu.cn
纸质出版日期:2020-7,
网络出版日期:2020-6-15,
收稿日期:2020-5-15,
扫 描 看 全 文
龙家伟, 史小慧, 刘博文, 卢鹏, 陈力, 王玉忠. 一种新型含硅氧烷间隔基元的半芳香族共聚酰胺[J]. 高分子学报, 2020,51(7):681-686.
Jia-wei Long, Xiao-hui Shi, Bo-wen Liu, Peng Lu, Li Chen, Yu-zhong Wang. Semi-aromatic Polyamides Containing Siloxane Unit toward High Performance[J]. Acta Polymerica Sinica, 2020,51(7):681-686.
龙家伟, 史小慧, 刘博文, 卢鹏, 陈力, 王玉忠. 一种新型含硅氧烷间隔基元的半芳香族共聚酰胺[J]. 高分子学报, 2020,51(7):681-686. DOI: 10.11777/j.issn1000-3304.2020.20125.
Jia-wei Long, Xiao-hui Shi, Bo-wen Liu, Peng Lu, Li Chen, Yu-zhong Wang. Semi-aromatic Polyamides Containing Siloxane Unit toward High Performance[J]. Acta Polymerica Sinica, 2020,51(7):681-686. DOI: 10.11777/j.issn1000-3304.2020.20125.
通过芳香族亲核取代反应合成了一系列含硅氧烷基元主链结构的半芳香族共聚酰胺. 研究发现,共聚酰胺具有较高的分子量和较窄的分子量分布. 硅氧烷结构的引入不仅赋予了共聚酰胺低的吸水率,而且使其能保持良好的力学性能,当硅氧烷结构含量为10 mol%时,拉伸强度达到80.0 MPa,缺口冲击强度为4.8 kJ/m
2
,可与商品化HTN产品相媲美. 阻燃性能测试结果可知,在不添加磷、卤等传统阻燃剂的情况下,随着硅氧烷结构含量的增加,共聚酰胺表现出良好的阻燃抗熔滴效果. 当共聚酰胺中硅氧烷结构含量为10 mol%时,极限氧指数可达33.5%,可通过UL-94垂直燃烧V-0级.
Semi-aromatic polyamides (SaPAs) and their derivatives combining each advantage of aromatic and aliphatic polyamides receive ever-increasing interest in both academic and industrial fields. However
severe challenges
such as processibility and flammability of SaPAs still remain which limit their versatile applications. In order to endow satistied processibility of SaPAs either in melt or in solution
tremendous efforts have been explored to weaken the interchain cohesive energy by chemical modification of the SaPAs’ backbones or side groups. Unfortunately
their flame retardancy got even worse. In this work
a novel series of SaPAs containing flexible siloxane spacers and rigid fluorenyl pendent
termed P-FPH
100−
x
Si
x
were designed and synthesized through the aromatic nucleophilic substitution (S
N
Ar) polycondensation. The effects of both the fluorenyl pendent and siloxane spacers on the comprehensive properties of the semi-aromatic polyamides were comprehensively investigated. On the one hand
the presence of the rigid fluorenyl pendent endowed the resulting P-FPH
100−
x
Si
x
with enhanced thermal stability and mechanical properties
compared with the commercially available HTN. On the other hand
with increasing content of the siloxane spacers
their tensile strength and impact strength gradually decreased. Most importantly
by introducing the silaxane spacers
P-FPH
100−
x
Si
x
displayed intrinsic flame retardancy and anti-dripping performance despite the absence of conventional P-/N-containing flame retardants. When the content of the siloxane spacers was 10 mol%
the P-FPH
80
Si
20
did not only achieve the V-0 rating in UL-94 burning test with limiting oxygen index (LOI) as high as 33.5%
but also maintain 80.0 MPa of tensile strength and 4.8 kJ/m
2
of the notched Izod impact strength. Taking the aforementioned advantages
this kind of novel SaPAs hold potential in a wide range of applications.
共聚酰胺硅氧烷间隔基元力学性能阻燃
CopolyamideSiloxane spacerMechanical propertiesFlame retardancy
Lin Xuebao(林学葆), Du Shuanglan(杜双兰), Tan Yi(谭翼), Chen Li(陈力), Wang Yuzhong(王玉忠). Acta Polymerica Sinica(高分子学报) , 2016 . ( 11 ): 1522 - 1528 . DOI:10.11777/j.issn1000-3304.2016.16191http://doi.org/10.11777/j.issn1000-3304.2016.16191 .
Uchida K, Kikuchi H C K C, Kashimura T C K C, Yamashita T C K C, Yamasaki H C K C. European patent, C08G, 1860134. 2015-05-27
Uchida K, Kikuchi H, Kashimura T, Yamashita T, Yamasaki H. US patent, 20090098325 A1.2009-04-16
Lin X B, Chen L, Long J W, Du S L, Wang Y Z. Chem Eng J , 2018 . 334 1046 - 1054 . DOI:10.1016/j.cej.2017.10.101http://doi.org/10.1016/j.cej.2017.10.101 .
Zhao B, Chen L, Long J W, Chen H B, Wang Y Z. Ind Eng Chem Res , 2013 . 52 ( 8 ): 2875 - 2886 . DOI:10.1021/ie303446shttp://doi.org/10.1021/ie303446s .
Braun U, Schartel B, Fichera M A, Jäger C. Polym Degrad Stab , 2007 . 92 ( 8 ): 1528 - 1545 . DOI:10.1016/j.polymdegradstab.2007.05.007http://doi.org/10.1016/j.polymdegradstab.2007.05.007 .
Lin G P, Chen L, Wang X L, Jian R K, Zhao B, Wang Y Z. Ind Eng Chem Res , 2013 . 52 ( 44 ): 15613 - 15620 . DOI:10.1021/ie402396xhttp://doi.org/10.1021/ie402396x .
Braun U, Bahr H, Sturm H, Schartel B. Polym Adv Technol ,2008 . 19 ( 6 ): 680 - 692 . DOI:10.1002/pat.1147http://doi.org/10.1002/pat.1147 .
Lin X B, Du S L, Long J W, Chen L, Wang Y Z. ACS Appl Mater Interfaces , 2016 . 8 ( 1 ): 881 - 890 . DOI:10.1021/acsami.5b10287http://doi.org/10.1021/acsami.5b10287 .
Chen Lin(陈琳), Wu Jianing(吴嘉宁), Ni Yanpeng(倪延朋), Fu Teng(付腾), Wu Zhizheng(吴志正), Wang Xiuli(汪秀丽), Wang Yuzhong(王玉忠). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1207 - 1214 . DOI:10.11777/j.issn1000-3304.2017.17079http://doi.org/10.11777/j.issn1000-3304.2017.17079 .
Wang Yuzhong(王玉忠). Flame-retardation Design of PET Fibers(聚酯纤维阻燃化设计). Chengdu(成都): Sichuan Science & Technology Press(四川科学技术出版社), 1994. 10 – 18
Zhang Y, Chen L, Zhao J J, Chen H B, He M X, Ni Y P, Zhai J Q, Wang X L, Wang Y Z. Polym Chem , 2014 . 5 ( 6 ): 1982 - 1991 . DOI:10.1039/C3PY01030Ahttp://doi.org/10.1039/C3PY01030A .
Fan S, Peng B, Yuan R, Wu D, Wang X, Yu J, Li F. Compos Part B-Eng , 2020 . 183 107684 .
Ge H, Wang W, Pan Y, Yu X, Hu W, Hu Y. RSC Adv , 2016 . 6 ( 85 ): 81802 - 81808 . DOI:10.1039/C6RA17108Ghttp://doi.org/10.1039/C6RA17108G .
Lewin M. Polym Degrad Stab , 2005 . 88 13 - 19 . DOI:10.1016/j.polymdegradstab.2003.12.011http://doi.org/10.1016/j.polymdegradstab.2003.12.011 .
Samyn F, Bourbigot S, Jama C, Bellayer S, Nazare S, Hull R, Fina A, Castrovinci A, Camino G. Eur Polym J , 2008 . 44 1631 - 1641 . DOI:10.1016/j.eurpolymj.2008.03.018http://doi.org/10.1016/j.eurpolymj.2008.03.018 .
Long J W, Chen L, Liu B W, Shi X H, Lin X B, Li Y M, Wang Y Z. Macromolecules , 2020 . 53 ( 9 ): 3504 - 3513 . DOI:10.1021/acs.macromol.0c00578http://doi.org/10.1021/acs.macromol.0c00578 .
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构