浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 北京 100029
[ "石淑先,女,1971年生. 北京化工大学材料科学与工程学院副教授,硕士生导师. 分别于1995年、2000年和2007年获得北京化工大学学士、硕士和博士学位. 2012 ~ 2013年加拿大麦克马斯特大学国家公派访问学者. 主要研究方向为功能高分子材料的分子设计、制备和改性,发展高分子材料功能化途径及应用" ]
纸质出版日期:2020-9-30,
网络出版日期:2020-8-18,
收稿日期:2020-5-25,
修回日期:2020-6-17,
扫 描 看 全 文
吴思, 夏宇正, 陈晓农, 石淑先. 聚
Si Wu, Yu-zheng Xia, Xiao-nong Chen, Shu-xian Shi. Progress in Preparation, Configuration, and Application of Composite Particles of Poly(
吴思, 夏宇正, 陈晓农, 石淑先. 聚
Si Wu, Yu-zheng Xia, Xiao-nong Chen, Shu-xian Shi. Progress in Preparation, Configuration, and Application of Composite Particles of Poly(
金纳米粒子(AuNPs)具有独特的光电、催化和生物相容特性,然而由于其具有高表面能,在制备和应用过程中易发生团聚,限制其实际应用. 将温度响应型聚合物聚(
N
-异丙基丙烯酰胺)(PNIPAM)与球状AuNPs复合,不仅可防止AuNPs团聚,二者在性能上协同作用,使AuNPs的光电、催化特性与PNIPAM的温度响应性相结合. 本文总结了制备PNIPAM/AuNPs的表面接枝法、原位还原法、逐层法和物理共混法,综述了复合粒子具有的核壳型、核-卫星型、蛋壳型、空心微球型、无规填充型、表面覆盖型等不同结构,介绍了其在传感器、催化剂、光学器件、生物医用等领域的应用,并对PNIPAM/AuNPs复合粒子的发展前景进行了展望.
Gold nanoparticles (AuNPs) with unique optothermal
catalysis and biocompatibility properties have been widely used for biosensors
catalysts
disease diagnosis and other fields. However
AuNPs are prone to aggregation during preparation due to high surface energy
which limits their practical application. Fabrication of AuNPs-polymer hybrid composites not only prevents AuNPs aggregation
but also takes advantage of both polymer and AuNPs through synergistic effect. As the most famous thermo-responsive polymer
the combination between poly(
N
-isopropylacrylamide) (PNIPAM) and AuNPs has been well reported. This paper summarizes the technologies for PNIPAM/AuNPs composite particles preparation through surface grafting
in situ
reduction
layer-by-layer assembling and physical mixing. The temperature responsiveness and localized surface plasmon resonance (LSPR) performance of the composite particles can be modulated by controlling the size of AuNPs
the molecular weight of PNIPAM
and the ratio of PNIPAM to AuNPs. PNIPAM/AuNPs composite particles with various configurations such as core-shell
core-satellite
yolk-shell
hollow microsphere
random filled
and surface covered have been reviewed. In addition
the development prospects
and applications of PNIPAM/AuNPs composite particles in various types of sensors
nanoreactors for catalysis
optical devices
biological and other fields applications have also been discussed. Researchers can combine with advanced colorimetric analysis methods to improve the temperature response sensitivity of the composite particles
and make efforts to improve its cycle efficiency by increasing magnetic properties when the composite particles are used as catalysts.
聚(N-异丙基丙烯酰胺)金纳米粒子复合粒子制备结构应用
Poly(N-isopropylacrylamide)Gold nanoparticlesComposite particlesPreparationConfigurationApplication
Huang X H, Neretina S, El-Sayed M A. Adv Mater , 2009 . 21 ( 48 ): 4880 - 4910 . DOI:10.1002/adma.200802789http://doi.org/10.1002/adma.200802789 .
Liz-Marzán L M. Mater Today , 2004 . 7 ( 2 ): 26 - 31 . DOI:10.1016/S1369-7021(04)00080-Xhttp://doi.org/10.1016/S1369-7021(04)00080-X .
Turkevich J, Stevenson P C, Hillier J. Discuss Faraday Soc , 1951 . 11 55 - 75 . DOI:10.1039/df9511100055http://doi.org/10.1039/df9511100055 .
Seol S K, Kim D, Jung S, Chang W S, Bae Y M, Lee K H, Hwu Y. Mater Chem Phys , 2012 . 137 ( 1 ): 135 - 139 . DOI:10.1016/j.matchemphys.2012.08.057http://doi.org/10.1016/j.matchemphys.2012.08.057 .
Chen D, Li C Y, Liu H, Ye F, Yang J. Sci Rep , 2015 . 5 ( 1 ):11949 DOI:10.1038/srep11949http://doi.org/10.1038/srep11949 .
Kang H, Buchman J T, Rodriguez R S, Ring H L, He J Y, Bantz K C, Haynes C L. Chem Rev , 2019 . 119 ( 1 ): 664 - 699 . DOI:10.1021/acs.chemrev.8b00341http://doi.org/10.1021/acs.chemrev.8b00341 .
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. J Mater Chem B , 2020 . 8 ( 4 ): 607 - 628 . DOI:10.1039/C9TB02052Ghttp://doi.org/10.1039/C9TB02052G .
Gong C, Qi T, Wei X, Qu Y, Wu Q, Luo F, Qian Z. Curr Med Chem , 2013 . 20 ( 1 ): 79 - 94 . DOI:10.2174/0929867311302010009http://doi.org/10.2174/0929867311302010009 .
Frank H, Ziener U, Landfester K. Macromol Symp , 2014 . 337 ( 1 ): 18 - 24 . DOI:10.1002/masy.201450302http://doi.org/10.1002/masy.201450302 .
Glaria A, Beija M, Bordes R, Destarac M, Marty J D. Chem Mater , 2013 . 25 ( 9 ): 1868 - 1876 . DOI:10.1021/cm400480phttp://doi.org/10.1021/cm400480p .
Shan J, Nuopponen M, Jiang H, Kauppinen E, Tenhu H. Macromolecules , 2003 . 36 ( 12 ): 4526 - 4533 . DOI:10.1021/ma034265khttp://doi.org/10.1021/ma034265k .
Li J B, Wu W L, Han C, Zhang S J, Zhou H Y, Guo J W. Colloid Polym Sci , 2014 . 292 ( 7 ): 1657 - 1664 . DOI:10.1007/s00396-014-3225-9http://doi.org/10.1007/s00396-014-3225-9 .
Wu T, Zhang Q Q, Hu J M, Zhang G Y, Liu S Y. J Mater Chem , 2012 . 22 ( 11 ): 5155 - 5163 . DOI:10.1039/c2jm15530chttp://doi.org/10.1039/c2jm15530c .
Li C F, Wang C L, Ji Z Y, Jiang N K, Lin W H, Li D X. Eur Polym J , 2019 . 113 404 - 410 . DOI:10.1016/j.eurpolymj.2019.02.009http://doi.org/10.1016/j.eurpolymj.2019.02.009 .
Zhu M Q, Wang L Q, Exarhos G J, Li A D Q. J Am Chem Soc , 2004 . 126 ( 9 ): 2656 - 2657 . DOI:10.1021/ja038544zhttp://doi.org/10.1021/ja038544z .
Mazloomi-Rezvani M, Salami-Kalajahi M, Roghani-Mamaqani H. J Phys Chem Solids , 2018 . 123 183 - 190 . DOI:10.1016/j.jpcs.2018.08.002http://doi.org/10.1016/j.jpcs.2018.08.002 .
Tian J, Huang B X, Zhang W A. Langmuir , 2019 . 35 ( 1 ): 266 - 275 . DOI:10.1021/acs.langmuir.8b03345http://doi.org/10.1021/acs.langmuir.8b03345 .
Maji S, Cesur B, Zhang Z Y, De Geest B G, Hoogenboom R. Polym Chem , 2016 . 7 ( 9 ): 1705 - 1710 . DOI:10.1039/C5PY01959Ahttp://doi.org/10.1039/C5PY01959A .
Han F, Soeriyadi A H, Vivekchand S R C, Gooding J J. ACS Macro Lett , 2016 . 5 ( 5 ): 626 - 630 . DOI:10.1021/acsmacrolett.6b00222http://doi.org/10.1021/acsmacrolett.6b00222 .
Ebeling B, Vana P. Macromolecules , 2013 . 46 ( 12 ): 4862 - 4871 . DOI:10.1021/ma4008626http://doi.org/10.1021/ma4008626 .
Honold T, Skrybeck D, Wagner K G, Karg M. Langmuir , 2017 . 33 ( 1 ): 253 - 261 . DOI:10.1021/acs.langmuir.6b03874http://doi.org/10.1021/acs.langmuir.6b03874 .
Zhang Z Y, Maji S, Antunes A B d F, de Rycke R, Zhang Q L, Hoogenboom R, de Geest B G. Chem Mater , 2013 . 25 ( 21 ): 4297 - 4303 . DOI:10.1021/cm402414uhttp://doi.org/10.1021/cm402414u .
Yusa S I, Fukuda K, Yamamoto T, Iwasaki Y, Watanabe A, Akiyoshi K, Morishima Y. Langmuir , 2007 . 23 ( 26 ): 12842 - 12848 . DOI:10.1021/la702741qhttp://doi.org/10.1021/la702741q .
Jones S T, Walsh-Korb Z, Barrow S J, Henderson S L, del Barrio J, Scherman O A. ACS Nano , 2016 . 10 ( 3 ): 3158 - 3165 . DOI:10.1021/acsnano.5b04083http://doi.org/10.1021/acsnano.5b04083 .
Aqil A, Qiu H J, Greisch J F, Jérôme R, De Pauw E, Jérôme C. Polymer , 2008 . 49 ( 5 ): 1145 - 1153 . DOI:10.1016/j.polymer.2007.12.033http://doi.org/10.1016/j.polymer.2007.12.033 .
Wang T, Song Y N, Jin L, Li J X, Gao Y, Shi S. Chin J Chem , 2017 . 35 ( 11 ): 1755 - 1760 . DOI:10.1002/cjoc.201700287http://doi.org/10.1002/cjoc.201700287 .
Cozzens Y, Steeves D M, Soares J W, Whitten J E. Macromolecules , 2019 . 52 ( 7 ): 2900 - 2910 . DOI:10.1021/acs.macromol.8b02638http://doi.org/10.1021/acs.macromol.8b02638 .
Deshpande S, Sharma S, Koul V, Singh N. ACS Omega , 2017 . 2 ( 10 ): 6455 - 6463 . DOI:10.1021/acsomega.7b01016http://doi.org/10.1021/acsomega.7b01016 .
Zhang T, Zheng Z H, Ding X B, Peng Y X. Macromol Rapid Commun , 2008 . 29 ( 21 ): 1716 - 1720 . DOI:10.1002/marc.200800385http://doi.org/10.1002/marc.200800385 .
Bastús N G, Comenge J, Puntes V. Langmuir , 2011 . 27 ( 17 ): 11098 - 11105 . DOI:10.1021/la201938uhttp://doi.org/10.1021/la201938u .
Kusolkamabot K, Sae-ung P, Niamnont N, Wongravee K, Sukwattanasinitt M, Hoven V P. Langmuir , 2013 . 29 ( 39 ): 12317 - 12327 . DOI:10.1021/la402139ghttp://doi.org/10.1021/la402139g .
Turek V A, Cormier S, Sierra-Martin B, Keyser U F, Ding T, Baumberg J J. Adv Opt Mater , 2018 . 6 ( 8 ): 1701270 DOI:10.1002/adom.201701270http://doi.org/10.1002/adom.201701270 .
Eyimegwu P N, Lartey J A, Kim J H. ACS Appl Nano Mater , 2019 . 2 ( 9 ): 6057 - 6066 . DOI:10.1021/acsanm.9b01594http://doi.org/10.1021/acsanm.9b01594 .
Raula J, Shan J, Nuopponen M, Niskanen A, Jiang H, Kauppinen E I, Tenhu H. Langmuir , 2003 . 19 ( 8 ): 3499 - 3504 . DOI:10.1021/la026872rhttp://doi.org/10.1021/la026872r .
Nguyen M, Kherbouche I, Braik M, Belkhir A, Boubekeur-Lecaque L, Aubard J, Mangeney C, Felidj N. ACS Omega , 2019 . 4 ( 1 ): 1144 - 1150 . DOI:10.1021/acsomega.8b03107http://doi.org/10.1021/acsomega.8b03107 .
Lian X M, Jin J, Tian J, Zhao H Y. ACS Appl Mater Interfaces , 2010 . 2 ( 8 ): 2261 - 2268 . DOI:10.1021/am1003156http://doi.org/10.1021/am1003156 .
Luo C H, Qian M J, Dong Q J. e-Polymers , 2017 . 17 ( 1 ): 65 - 70 . DOI:10.1515/epoly-2016-0247http://doi.org/10.1515/epoly-2016-0247 .
Shi S, Wang Q M, Wang T, Ren S P, Gao Y, Wang N. J Phys Chem B , 2014 . 118 ( 25 ): 7177 - 7186 . DOI:10.1021/jp5027477http://doi.org/10.1021/jp5027477 .
Marcelo G, Fernández-García M. RSC Adv , 2014 . 4 ( 23 ): 11740 - 11749 . DOI:10.1039/C3RA47880Ghttp://doi.org/10.1039/C3RA47880G .
Suzuki D, Kawaguchi H. Langmuir , 2005 . 21 ( 18 ): 8175 - 8179 . DOI:10.1021/la0504356http://doi.org/10.1021/la0504356 .
Shi S, Zhang L, Wang T, Wang Q M, Gao Y, Wang N. Soft Matter , 2013 . 9 ( 46 ): 10966 - 10970 . DOI:10.1039/c3sm52303ahttp://doi.org/10.1039/c3sm52303a .
Suzuki D, Kawaguchi H. Langmuir , 2005 . 21 ( 25 ): 12016 - 12024 . DOI:10.1021/la0516882http://doi.org/10.1021/la0516882 .
Chen Y H, Wang Z W, Harn Y W, Pan S, Li Z L, Lin S L, Peng J, Zhang G Z, Lin Z Q. Angew Chem Int Ed , 2019 . 58 ( 34 ): 11910 - 11917 . DOI:10.1002/anie.201906329http://doi.org/10.1002/anie.201906329 .
Qiao J, Ding H, Liu Q R, Zhang R Y, Qi L. Anal Chem , 2017 . 89 ( 3 ): 2080 - 2085 . DOI:10.1021/acs.analchem.6b04722http://doi.org/10.1021/acs.analchem.6b04722 .
Jeong G Y, Ricco R, Liang K, Ludwig J, Kim J O, Falcaro P, Kim D-P. Chem Mater , 2015 . 27 ( 23 ): 7903 - 7909 . DOI:10.1021/acs.chemmater.5b02847http://doi.org/10.1021/acs.chemmater.5b02847 .
Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán L M. Adv Funct Mater , 2009 . 19 ( 19 ): 3070 - 3076 . DOI:10.1002/adfm.200900481http://doi.org/10.1002/adfm.200900481 .
Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera Á R, Liz-Marzán L M. Soft Matter , 2012 . 8 ( 15 ): 4165 - 4170 . DOI:10.1039/C1SM06396Khttp://doi.org/10.1039/C1SM06396K .
Yang K, Dai Z, Chu Y Y, Chen G P. Micro Nano Lett , 2016 . 11 ( 3 ): 129 - 136 . DOI:10.1049/mnl.2015.0435http://doi.org/10.1049/mnl.2015.0435 .
Penelas M J, Contreras C B, Angelomé P C, Wolosiuk A, Azzaroni O, Soler-Illia G J A A. Langmuir , 2020 . 36 ( 8 ): 1965 - 1974 . DOI:10.1021/acs.langmuir.9b03065http://doi.org/10.1021/acs.langmuir.9b03065 .
Lim S, Song J E, La J A, Cho E C. Chem Mater , 2014 . 26 ( 10 ): 3272 - 3279 . DOI:10.1021/cm501061thttp://doi.org/10.1021/cm501061t .
Choe A, Yeom J, Shanker R, Kim M P, Kang S, Ko H. NPG Asia Mater , 2018 . 10 912 - 922 . DOI:10.1038/s41427-018-0086-6http://doi.org/10.1038/s41427-018-0086-6 .
Liu G Q, Wang D A, Zhou F, Liu W M. Small , 2015 . 11 ( 23 ): 2807 - 2816 . DOI:10.1002/smll.201403305http://doi.org/10.1002/smll.201403305 .
Qian Z X, Guye K N, Masiello D J, Ginger D S. J Phys Chem B , 2017 . 121 ( 5 ): 1092 - 1099 . DOI:10.1021/acs.jpcb.7b00013http://doi.org/10.1021/acs.jpcb.7b00013 .
Wei M L, Serpe M J. Part Part Syst Char , 2019 . 36 ( 1 ): 1800326 DOI:10.1002/ppsc.201800326http://doi.org/10.1002/ppsc.201800326 .
Magnozzi M, Brasse Y, König T A F, Bisio F, Bittrich E, Fery A, Canepa M. ACS Appl Nano Mater , 2020 . 3 ( 2 ): 1674 - 1682 . DOI:10.1021/acsanm.9b02403http://doi.org/10.1021/acsanm.9b02403 .
Won S, Phillips D J, Walker M, Gibson M I. J Mater Chem B , 2016 . 4 ( 34 ): 5673 - 5682 . DOI:10.1039/C6TB01336Hhttp://doi.org/10.1039/C6TB01336H .
Liu W, Zhu X L, Xu C C, Dai Z, Meng Z H. Nanomaterials , 2018 . 8 ( 12 ): 963 DOI:10.3390/nano8120963http://doi.org/10.3390/nano8120963 .
Yoon J H, Yoon S. Langmuir , 2013 . 29 ( 48 ): 14772 - 14778 . DOI:10.1021/la403599phttp://doi.org/10.1021/la403599p .
Yoon J H, Lim J, Yoon S. ACS Nano , 2012 . 6 ( 8 ): 7199 - 7208 . DOI:10.1021/nn302264fhttp://doi.org/10.1021/nn302264f .
Rossner C, Vana P. Angew Chem Int Ed , 2014 . 53 ( 46 ): 12639 - 12642.
Ge J P, Huynh T, Hu Y X, Yin Y D. Nano Lett , 2008 . 8 ( 3 ): 931 - 934 . DOI:10.1021/nl080020fhttp://doi.org/10.1021/nl080020f .
Liu J, Qiao S Z, Hartono S B, Qing G. Angew Chem Int Ed , 2010 . 122 ( 29 ): 4981 - 4985.
Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X H, Ballauff M, Lu Y. Angew Chem Int Ed , 2012 . 51 ( 9 ): 2229 - 2233 . DOI:10.1002/anie.201106515http://doi.org/10.1002/anie.201106515 .
Yang Q F, Dai Z, Guo W J, Chu Y Y, Chen G P. Pak J Pharm Sci , 2014 . 27 ( 5 ): 1611 - 1614.
Liu G Y, Ji H F, Yang X L, Wang Y M. Langmuir , 2008 . 24 ( 3 ): 1019 - 1025 . DOI:10.1021/la7025957http://doi.org/10.1021/la7025957 .
Chen Z, Cui Z M, Cao C Y, He W D, Jiang L, Song W G. Langmuir , 2012 . 28 ( 37 ): 13452 - 13458 . DOI:10.1021/la3022535http://doi.org/10.1021/la3022535 .
Lu Y, Yuan J Y, Polzer F, Drechsler M, Preussner J. ACS Nano , 2010 . 4 ( 12 ): 7078 - 7086.
Christau S, Möller T, Brose F, Genzer J, Soltwedel O, Von Klitzing R. Polymer , 2016 . 98 454 - 463 . DOI:10.1016/j.polymer.2016.03.088http://doi.org/10.1016/j.polymer.2016.03.088 .
Christau S, Möller T, Genzer J, Koehler R, Von Klitzing R. Macromolecules , 2017 . 50 ( 18 ): 7333 - 7343 . DOI:10.1021/acs.macromol.7b00866http://doi.org/10.1021/acs.macromol.7b00866 .
Chen A, Qi J J, Zhao Q S, Li Y, Zhang G L, Zhang F B, Fan X B. RSC Adv , 2013 . 3 ( 23 ): 8973 - 8977 . DOI:10.1039/c3ra40718ghttp://doi.org/10.1039/c3ra40718g .
Jang W, Byun H, Kim J H. ChemCatChem , 2020 . 12 ( 3 ): 705 - 709 . DOI:10.1002/cctc.201901710http://doi.org/10.1002/cctc.201901710 .
Mastrotto F, Caliceti P, Amendola V, Bersani S, Magnusson J P, Meneghetti M, Mantovani G, Alexander C, Salmaso S. Chem Commun , 2011 . 47 ( 35 ): 9846 - 9848 . DOI:10.1039/c1cc12654ghttp://doi.org/10.1039/c1cc12654g .
Liu F, Cui Y C, Wang L, Wang H W, Yuan Y Q, Pan J J, Chen H, Yuan L. ACS Appl Mater Interfaces , 2015 . 7 ( 21 ): 11547 - 11554 . DOI:10.1021/acsami.5b02502http://doi.org/10.1021/acsami.5b02502 .
Sun Y, Li Z H, Wu J X, Wang Z Q, Dong Y S, Wang H W, Brash J L, Yuan L, Chen H. J Mater Chem B , 2019 . 7 ( 20 ): 3260 - 3267 . DOI:10.1039/C9TB00325Hhttp://doi.org/10.1039/C9TB00325H .
Im J, Chandekar A, Whitten J E. Langmuir , 2009 . 25 ( 8 ): 4288 - 4292 . DOI:10.1021/la900016uhttp://doi.org/10.1021/la900016u .
Ahn H, Chandekar A, Kang B, Sung C, Whitten J E. Chem Mater , 2004 . 16 ( 17 ): 3274 - 3278 . DOI:10.1021/cm049794xhttp://doi.org/10.1021/cm049794x .
Lu J H, Yang Y, Gao J F, Duan H C, Lu C L. Langmuir , 2018 . 34 ( 28 ): 8205 - 8214 . DOI:10.1021/acs.langmuir.8b00414http://doi.org/10.1021/acs.langmuir.8b00414 .
Li L, Zhang T Y, Lu J H, Lu C L. Appl Surf Sci , 2018 . 454 181 - 191 . DOI:10.1016/j.apsusc.2018.05.157http://doi.org/10.1016/j.apsusc.2018.05.157 .
François L, Mostafavi M, Belloni J, Delouis J F, Delaire J, Feneyrou P. J Phys Chem B , 2000 . 104 ( 26 ): 6133 - 6137 . DOI:10.1021/jp9944482http://doi.org/10.1021/jp9944482 .
D’Britto V, Sandeep C S S, Philip R, Prasad B L V. Colloid Surface A , 2009 . 352 ( 1-3 ): 79 - 83 . DOI:10.1016/j.colsurfa.2009.10.002http://doi.org/10.1016/j.colsurfa.2009.10.002 .
Wang G, Sun W. J Phys Chem B , 2006 . 110 ( 42 ): 20901 - 20905 . DOI:10.1021/jp0638843http://doi.org/10.1021/jp0638843 .
Johnson K C C, Mendez F, Serpe M J. Anal Chim Acta , 2012 . 739 83 - 88 . DOI:10.1016/j.aca.2012.06.025http://doi.org/10.1016/j.aca.2012.06.025 .
Sorrell C D, Serpe M J. Anal Bioanal Chem , 2012 . 402 ( 7 ): 2385 - 2393 . DOI:10.1007/s00216-012-5736-xhttp://doi.org/10.1007/s00216-012-5736-x .
Kwon Y, Choi Y, Jang J, Yoon S, Choi J. Pharmaceutics , 2020 . 12 ( 3 ): 204 DOI:10.3390/pharmaceutics12030204http://doi.org/10.3390/pharmaceutics12030204 .
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构