浏览全部资源
扫码关注微信
化学工程联合国家重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
E-mail: wangjd@zju.edu.cn Jingdai Wang, E-mail: wangjd@zju.edu.cn
纸质出版日期:2021-2-3,
网络出版日期:2020-8-28,
收稿日期:2020-5-29,
修回日期:2020-6-30,
扫 描 看 全 文
胡晓波, 杨遥, 蒋斌波, 王靖岱, 阳永荣. 流化床聚合反应器两种操作模式下乙烯共聚物的链结构与力学性能[J]. 高分子学报, 2021,52(2):186-195.
Xiao-bo Hu, Yao Yang, Bin-bo Jiang, Jing-dai Wang, Yong-rong Yang. Chain Structure and Mechanical Properties of Ethylene Copolymers in Two Operating Modes of Fluidized Bed Polymerization Reactor[J]. Acta Polymerica Sinica, 2021,52(2):186-195.
胡晓波, 杨遥, 蒋斌波, 王靖岱, 阳永荣. 流化床聚合反应器两种操作模式下乙烯共聚物的链结构与力学性能[J]. 高分子学报, 2021,52(2):186-195. DOI: 10.11777/j.issn1000-3304.2020.20140.
Xiao-bo Hu, Yao Yang, Bin-bo Jiang, Jing-dai Wang, Yong-rong Yang. Chain Structure and Mechanical Properties of Ethylene Copolymers in Two Operating Modes of Fluidized Bed Polymerization Reactor[J]. Acta Polymerica Sinica, 2021,52(2):186-195. DOI: 10.11777/j.issn1000-3304.2020.20140.
采用制备型升温淋洗分级方法,对流化床聚合反应器在持液操作模式和冷凝态操作模式下生产的A、B两种乙烯/1-丁烯/1-己烯三元共聚物进行了分级,并结合多种分析手段对样品及其各级份进行了结构表征,同时测试对比了A、B两种聚乙烯样品的力学性能. 结果表明,与冷凝态操作模式生产的聚乙烯样品B相比,持液操作模式下生产的聚乙烯样品A的拉伸屈服强度、拉伸断裂强度、断裂伸长率、冲击强度和雾度都比样品B优异. 样品A的低温淋洗级份相对含量低于样品B,而其高温淋洗级份相对含量高于样品B;样品A低温淋洗级份的分子量略低于样品B,而其高温淋洗级份的分子量高于样品B;样品A的薄片晶含量和厚片晶含量都比样品B多,同时样品A的片晶厚度分布比样品B宽;样品A的总支化度以及每个级份的支化度都比样品B高,且样品A的支链在分子链间的分布比样品B宽,即样品A的支链比样品B的支链更倾向于生长在高分子量部分. 通过以上表征分析,发现持液操作模式下生产的样品A比冷凝态操作模式下生产的样品B的物理使用性能更加优异,适合制备高性能的拉伸缠绕膜.
Two ethylene/1-butene/1-hexene terpolymers (sample A and sample B) produced in the fluidized bed polymerization reactor with two different operation modes were fractionated by prepared temperature rising elution fractionation (P-TREF)
and the structures of obtained fractions were characterized by the gel permeation chromatography (GPC)
differential scanning calorimetry (DSC)
nuclear magnetic resonance (
13
C-NMR)
and successive self-nucleation and annealing thermal analysis (SSA). Meanwhile
the tensile yield strength
tensile strength
impact strength
elongation and haze of these two sampled were also tested according to the National Standard of the People’s Republic of China. Results showed that compared with sample B produced in the condensed operation mode
the sample A produced in the liquid containing operation mode had better tensile yield strength
tensile strength
impact strength
elongation and haze. The relative content and the molecular weight of the low-temperature elution fraction of sample A was lower than those of sample B
but for high-temperature elution fraction
the relative content and the molecular weight of sample A were both higher than those of sample B. Sample A possessed the broader distribution of lamellar thickness than sample B. The distribution of short branches between molecular chains of sample A was also wider than that of sample B. From the analysis of branching degree and molecular weight
sample A’s short chain branches were more likely to grow in the high molecular weight chains than sample B. In summary
the sample A produced in the liquid containing operation mode has more excellent physical performance than sample B produced in the condensed operation mode
which was suitable for the preparation of high-performance stretch film material.
聚乙烯持液操作冷凝态操作制备型升温淋洗分级短支链分布
PolyethyleneLiquid containing mode operationCondensed mode operationPrepared-temperature rising elution fractionationShort chain branch distribution
Alizadeh A, McKenna T F. Macromol React Eng , 2014 . 8 419 - 433 . DOI:10.1002/mren.201300165http://doi.org/10.1002/mren.201300165 .
Wu W Q, Yang Y R, Luo G H, Wang J D, Jiang B B, Wang S F, Han G D. US Patent , 9174 . 183 2015 - 11-3.
Chen Meijuan(陈美娟). Investigation of the Sorption and Diffusion in Polyethylene by Gravimetric and NMR Methods and Its Application(基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用), Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2014
Zhou Y F, Ren C J, Wang J D, Yang Y R. Aiche J , 2013 . 59 1056 - 1065 . DOI:10.1002/aic.13883http://doi.org/10.1002/aic.13883 .
Anantawaraskul S, Soares J, Wood-Adams P M. Fractionation of Semicrystalline Polymers by Crystallization Analysis Fractionationand Temperature Rising Elution Fractionation[M]. Berlin: Springer, 2005: 1 − 54
Glöckner G. J Appl Polym Sci , 1990 . 45 1 - 24.
Umendra D. J Appl Polym Sci , 1994 . 53 1557 - 1562 . DOI:10.1002/app.1994.070531201http://doi.org/10.1002/app.1994.070531201 .
Starck P. Polym Int , 1996 . 40 111 - 122 . DOI:10.1002/(SICI)1097-0126(199606)40:2<111::AID-PI541>3.0.CO;2-Nhttp://doi.org/10.1002/(SICI)1097-0126(199606)40:2<111::AID-PI541>3.0.CO;2-N .
Zhang F J, Liu J P, Fu Q, Huang H Y, Hu Z J, Yao S, Cai X Y, He T B. J Polym Sci, Part B: Polym Phys , 2002 . 40 813 - 821 . DOI:10.1002/polb.10145http://doi.org/10.1002/polb.10145 .
Zhang M Q, Lynch D T, Wanke S E. J Appl Polym Sci , 2000 . 75 960 - 967 . DOI:10.1002/(SICI)1097-4628(20000214)75:7<960::AID-APP13>3.0.CO;2-Rhttp://doi.org/10.1002/(SICI)1097-4628(20000214)75:7<960::AID-APP13>3.0.CO;2-R .
Desreux V, Spiegels M C. Bull Soc Chim Belg , 1950 . 59 476 - 489 . DOI:10.1002/bscb.19500590707http://doi.org/10.1002/bscb.19500590707 .
Shirayama K, Okada T, Kita S I. J Polym Sci, Part A: Polym Chem , 1965 . 3 907 - 916.
Wild L. Separation Techniques Thermodynamics Liquid Crystal Polymers[M]. Berlin: Springer, 1990. 1 − 47
Xu J T, Feng L X. Eur Polym J , 2000 . 36 867 - 878 . DOI:10.1016/S0014-3057(99)00143-3http://doi.org/10.1016/S0014-3057(99)00143-3 .
Li R, Yang G X, Liu L. IOP Conference Series: Materials Science and Engineering , 2020 . 774 12 - 26 . DOI:10.1088/1757-899X/774/1/012026http://doi.org/10.1088/1757-899X/774/1/012026 .
Li P, Xue Y H, Liu W, Sun G P, Ji X L. J Polym Res , 2019 . 26 56 DOI:10.1007/s10965-019-1715-7http://doi.org/10.1007/s10965-019-1715-7 .
Arnal M L, Balsamo V, Ronca G, Sánchez A, Müller A J, Canizales E, de Navarro C U. J Therm Anal Calorim , 2000 . 59 451 - 470 . DOI:10.1023/A:1010137408023http://doi.org/10.1023/A:1010137408023 .
Bubeck R A. Mat Sci Eng R , 2002 . 39 1 - 28 . DOI:10.1016/S0927-796X(02)00074-8http://doi.org/10.1016/S0927-796X(02)00074-8 .
Gedde U W, Mattozzi A. Polyethylene Morphology[M]. Berlin: Springer, 2004. 29 − 74
Xu J T, Xu X R, Chen L S, Feng L X. J Mater Sci Lett , 2000 . 19 1541 - 1543 . DOI:10.1023/A:1006716904438http://doi.org/10.1023/A:1006716904438 .
Müller A J, Hernández Z H, Arnal M L, Sánchez J J. Polym Bull , 1997 . 39 465 - 472 . DOI:10.1007/s002890050174http://doi.org/10.1007/s002890050174 .
Zhang M Q, Wanke, S E. Polym Eng Sci , 2003 . 43 1878 - 1888 . DOI:10.1002/pen.10159http://doi.org/10.1002/pen.10159 .
Du Z X, Xu J T, Dong Q, Fan Z Q. Polymer , 2009 . 50 2510 - 2515 . DOI:10.1016/j.polymer.2009.04.006http://doi.org/10.1016/j.polymer.2009.04.006 .
Seger M R, Maciel G E. Anal Chem , 2004 . 76 5734 - 5747 . DOI:10.1021/ac040104ihttp://doi.org/10.1021/ac040104i .
0
浏览量
30
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构