浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300072
E-mail: fengyiyu@tju.edu.cn Yi-yu Feng, E-mail: fengyiyu@tju.edu.cn
E-mail:weifeng@tju.edu.cn Wei Feng, E-mail: weifeng@tju.edu.cn
纸质出版日期:2021-1-3,
网络出版日期:2020-8-4,
收稿日期:2020-6-3,
修回日期:2020-6-22,
扫 描 看 全 文
徐天宇, 冯奕钰, 封伟. 基于快速热释放功能的相变偶氮苯/织物复合材料[J]. 高分子学报, 2021,52(1):78-83.
Tian-yu Xu, Yi-yu Feng, Wei Feng. Phase Change Azobenzene/Fabric Composite Material Based on Rapid Heat Release Function[J]. Acta Polymerica Sinica, 2021,52(1):78-83.
徐天宇, 冯奕钰, 封伟. 基于快速热释放功能的相变偶氮苯/织物复合材料[J]. 高分子学报, 2021,52(1):78-83. DOI: 10.11777/j.issn1000-3304.2020.20146.
Tian-yu Xu, Yi-yu Feng, Wei Feng. Phase Change Azobenzene/Fabric Composite Material Based on Rapid Heat Release Function[J]. Acta Polymerica Sinica, 2021,52(1):78-83. DOI: 10.11777/j.issn1000-3304.2020.20146.
针对偶氮基光敏分子存在放热速率慢和温度难以控制的难点,在分子结构设计基础上,采用氧化偶合法制备了具有固-液相变功能的4
4′-对-二正己基偶氮苯(AZO-L6). 由于分子间作用力较低,偶氮苯分子呈现低熔、快异构化的特点,在发生反-顺异构化转变时大幅降低分子的熔点. 固-液相变过程实现了光热能和相变焓的存储,在结构回复时同时放出储存的能量(231.8 kJ/kg),并将相变偶氮苯应用于可穿戴聚合物复合织物中. 结果显示储能后的相变偶氮苯分子在蓝光(440 nm)刺激下在60 s内可将材料温度提升0.8 ℃,获得了具有自加热功能的可穿戴复合织物,为探索多功能自保温可穿戴装置提供了研究思路.
Due to the instant conversion of traditional photothermal conversion
solar energy could be stored for a short time
which limits its utilization in solar energy storage. Using photosensitive molecules as photothermal conversion materials
solar energy is stored in chemical bond
which becomes a common solution in this field and an important part of photothermal conversion field. As a common photothermal conversion material with simple synthesis
low cost and not easy to degrade
azobenzene (azo) can change from
trans
-structure to
cis
-structure in the light of specific wavelength and store the light energy in the chemical bond. When return to
trans
-structure under external stimulation
cis
-azo release energy in the form of heat energy
completing a light heat storage and release cycle. In view of the difficulties in the slow heat release rate and controlling the temperature of azo-based photosensitive molecules
based on the molecular structure design
4
4'-dihexylazobenzene (AZO-L6) with solid-liquid phase change function was prepared by the oxidation coupling method. The successful preparation of AZO-L6 was proved by relevant tests. Due to the low intermolecular force
the azo molecule is characterized by low melting point and fast isomerization
and when the
trans
to
cis
isomerization transition occurs
the melting point of the azo molecule greatly reduced. The process of solid-liquid phase changing realizes the storage of photothermal energy and phase change latent heat
and simultaneously releases the stored energy (231.8 kJ/kg) when returning to the
cis
-structure. We apply AZO-L6 to the wearable polymer composite fabric. It is proved that azo is fully filled into the fabric
and the isomerization of azo is hindered
while the recovery process is not affected. Under the stimulation of blue light (440 nm)
the phase change azo molecule can make the material temperature go up 0.8 °C within 60 s
and a wearable composite fabric with self-heating function is obtained
which provides research ideas for exploring multifunctional self-insulating wearable devices.
光致相变偶氮苯织物快速热释放
Photoinduced phase changeAzobenzeneFabricRapid heat release
Luo W, Feng Y, Qin C, Li M, Li S P, Cao C, Feng W. Nanoscale , 2015 . 7 16214 - 16221 . DOI:10.1039/C5NR03558Ahttp://doi.org/10.1039/C5NR03558A .
Kucharski, T J, Tian Y, Akbulatov S, Boulatov R. Energy Environ Sci , 2011 . 4 ( 11 ): 4449 - 4472 . DOI:10.1039/c1ee01861bhttp://doi.org/10.1039/c1ee01861b .
Ju D, Zhao T, Dang Y, Zhang G, Hu X, Cui D. J Mater Chem A , 2017 . 5 ( 45 ): 24014 DOI:10.1039/C7TA90247Fhttp://doi.org/10.1039/C7TA90247F .
Wa ng, Z, Yang C, Lin T, Yin H, Chen P, Wan D, Jiang M. Energy Environ Sci , 2013 . 6 ( 10 ): 3007 - 3014 . DOI:10.1039/c3ee41817khttp://doi.org/10.1039/c3ee41817k .
Sharma A, Tyagi V V, Chen C R, Buddhi D. Renew Sust Energ Rev , 2009 . 13 ( 2 ): 318 - 345 . DOI:10.1016/j.rser.2007.10.005http://doi.org/10.1016/j.rser.2007.10.005 .
Chu S, Majumdar A. Nature , 2012 . 488 ( 7411 ): 294 - 303 . DOI:10.1038/nature11475http://doi.org/10.1038/nature11475 .
Dong L, Feng Y, Wang L, Feng W. Chem Soc Rev , 2018 . 47 7339 - 7368 . DOI:10.1039/C8CS00470Fhttp://doi.org/10.1039/C8CS00470F .
Neale N R. Nat Chem , 2014 . 6 ( 5 ): 385 - 386 . DOI:10.1038/nchem.1933http://doi.org/10.1038/nchem.1933 .
Kucharski T J, Ferralis N, Kolpak A M, Zheng J O, Nocera D G, Grossman J C. Nat Chem , 2014 . 6 ( 5 ): 441 DOI:10.1038/nchem.1918http://doi.org/10.1038/nchem.1918 .
Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin K A. Int J Heat Mass Transf , 2019 . 129 491 - 523 . DOI:10.1016/j.ijheatmasstransfer.2018.09.126http://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126 .
Kolpak A M, Grossman J C. J Chem Phys , 2013 . 138 ( 3 ): 034303 DOI:10.1063/1.4773306http://doi.org/10.1063/1.4773306 .
Liao Yang(廖杨), Ding Liang(丁亮). Acta Polymerica Sinica(高分子学报) , 2015 . ( 8 ): 933 - 940 . DOI:10.11777/j.issn1000-3304.2015.14452http://doi.org/10.11777/j.issn1000-3304.2015.14452 .
Dreos A, Börjesson K, Wang Z, Roffey A, Norwood Z, Kushnir D, Moth-Poulsen K. Energy Environ Sci , 2017 . 10 ( 3 ): 728 - 734 . DOI:10.1039/C6EE01952Hhttp://doi.org/10.1039/C6EE01952H .
Huang Z, Li L, Wang Y, Zhang C, Liu T. Compos Commun , 2018 . 8 83 - 91 . DOI:10.1016/j.coco.2017.11.005http://doi.org/10.1016/j.coco.2017.11.005 .
Zhang Z, Qu J, Feng Y, Feng W. Compos Commun , 2018 . 9 33 - 41 . DOI:10.1016/j.coco.2018.04.009http://doi.org/10.1016/j.coco.2018.04.009 .
Strubbe D A, Grossman J C. J Phys Condens Matter , 2018 . 31 ( 3 ): 034002 .
Kolpak A M, Grossman J C. Nano Lett , 2011 . 11 3156 - 3162 . DOI:10.1021/nl201357nhttp://doi.org/10.1021/nl201357n .
Saydjari A K, Weis P, Wu S.. Adv Energy Mater , 2017 . 7 ( 3 ): 1601622 DOI:10.1002/aenm.201601622http://doi.org/10.1002/aenm.201601622 .
Yan Qinghai(阎清海), Feng Yiyu(冯奕钰), Feng Wei(封伟). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 9 ): 925 - 931 . DOI:10.11777/j.issn1000-3304.2019.19052http://doi.org/10.11777/j.issn1000-3304.2019.19052 .
Fu Linxia(符林霞), Feng Yiyu(冯奕钰), Feng Wei(封伟). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 12 ): 1272 - 1279 . DOI:10.11777/j.issn1000-3304.2019.19092http://doi.org/10.11777/j.issn1000-3304.2019.19092 .
Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Feng W. J Mater Chem A , 2019 . 7 ( 1 ): 97 - 106 . DOI:10.1039/C8TA05333Bhttp://doi.org/10.1039/C8TA05333B .
Cho E N, Zhitomirsky D, Han G G, Liu Y, Grossman J C. ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 8679 - 8687 . DOI:10.1021/acsami.6b15018http://doi.org/10.1021/acsami.6b15018 .
Kim S J, We J H, Cho B J. Energy Environ Sci , 2014 . 7 ( 6 ): 1959 - 1965 . DOI:10.1039/c4ee00242chttp://doi.org/10.1039/c4ee00242c .
Han J, Du G, Gao W, Bai H. Adv Funct Mater , 2019 . 29 ( 13 ): 1900412 DOI:10.1002/adfm.201900412http://doi.org/10.1002/adfm.201900412 .
Samanta S, Beharry A A, Sadovski O, McCormick T M, Babalhavaeji A, Tropepe V, Woolley G A. J Am Chem Soc , 2013 . 135 ( 26 ): 9777 - 9784 . DOI:10.1021/ja402220thttp://doi.org/10.1021/ja402220t .
0
浏览量
29
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构