浏览全部资源
扫码关注微信
1.华侨大学材料科学与工程学院 厦门 361021
2.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: fll@hqu.edu.cn Lian-lian Fu, E-mail: fll@hqu.edu.cn
纸质出版日期:2021-2-3,
网络出版日期:2020-8-14,
收稿日期:2020-6-3,
修回日期:2020-7-2,
扫 描 看 全 文
付莲莲, 卢影, 姜志勇, 门永锋. 基于同步辐射超小角X射线散射的高密度聚乙烯空洞化行为研究[J]. 高分子学报, 2021,52(2):204-213.
Lian-lian Fu, Ying Lu, Zhi-yong Jiang, Yong-feng Men. Cavitation in Tensile Stretched HDPE Revealed by Synchrotron Ultrasmall-angle X-ray Scattering[J]. Acta Polymerica Sinica, 2021,52(2):204-213.
付莲莲, 卢影, 姜志勇, 门永锋. 基于同步辐射超小角X射线散射的高密度聚乙烯空洞化行为研究[J]. 高分子学报, 2021,52(2):204-213. DOI: 10.11777/j.issn1000-3304.2020.20147.
Lian-lian Fu, Ying Lu, Zhi-yong Jiang, Yong-feng Men. Cavitation in Tensile Stretched HDPE Revealed by Synchrotron Ultrasmall-angle X-ray Scattering[J]. Acta Polymerica Sinica, 2021,52(2):204-213. DOI: 10.11777/j.issn1000-3304.2020.20147.
以一系列高温结晶后自然冷却的高密度聚乙烯(HDPE)为研究对象,利用同步辐射超小角X射线散射(USAXS)和示差扫描量热技术(DSC)对样品的微观结构进行了分析,并在线研究了单轴拉伸过程中的空洞化行为. 结果表明,结晶温度高于110 °C后自然冷却到室温的样品中存在热稳定性不同的两组片晶,等温过程形成结构完善的厚片晶,而在冷却过程会形成有缺陷的薄片晶,两组片晶的熔点分别在133和110 °C附近. 在30 °C拉伸时,所有样品都可观察到空洞化并伴随发白现象. 并且,等温结晶中形成片晶厚度越大的样品,相应的空洞化现象越明显. 在拉伸过程中,空洞出现在屈服点附近,其法向方向平行于拉伸方向,后随应变的增加发生转向,法向方向与拉伸方向垂直. 样品中空穴的长度为900~1200 nm. 另一方面,随着冷却过程生成薄片晶比例的增加,空洞化趋势下降. 此外,提高拉伸温度,样品更倾向发生塑性形变,空洞化程度减弱.
A series of high-density polyethylene samples with different microstructures obtained
via
isothermal crystallization at various temperatures and then cooling down to room temperature were used to explore the structural evolution and cavitation behavior during stretching by means of the ultrasmall-angle X-ray scattering and differential scanning calorimetry techniques. The samples crystallized at temperature higher than 110 °C then naturally cooled to room temperature possess two populations of lamellar stacks with different crystalline thicknesses. The thicker lamellae with well-organized structure were formed in the isothermal crystallization process
and chains crystallized at lower temperatures during cooling down yielded thinner defective lamellar crystallites. The melting temperatures of the two populations of lamellar stacks were around 133 and 110 °C
respectively. When deformed at 30 °C
the cavitation was observed in all samples and accompanied with strain-whitening phenomenon. It turned out that the cavities were more intense for the samples with thicker lamellae generated during isothermal crystallization. During deformation
the cavities first take place with the normal parallel to the stretching direction around yield point
and then changes the normal perpendicular to the tensile direction with the increase of strain. The length of cavities was calculated and the values were around 900 − 1200 nm. On the other hand
the extent of cavitation becomes smaller with the increasing ratio of the thinner lamellae crystallized during cooling down. Moreover
the plastic deformation of the lamellae is facilitated and the degree of cavitation become weaker with the increase of the stretching temperature.
X射线散射聚乙烯空洞化拉伸温度
X-ray scatteringPolyethyleneCaivitationStretching temperature
Zhou H, Wilkes G L. Macromolecules , 1997 . 30 ( 8 ): 2412 - 2421 . DOI:10.1021/ma961437nhttp://doi.org/10.1021/ma961437n .
An Lijia(安立佳), Chen Erqiang(陈尔强), Cui Shuxun(崔树勋), Dong Xia(董侠), Fu Qiang(傅强), Han Yanchun(韩艳春), He Jiasong(何嘉松), Hu Wenbing(胡文兵), Hu Zuming(胡祖明), Jiang Ming(江明), Li Baohui(李宝会), Li Liangbin (李良彬), Li Lin(李林), Li Weihua(李卫华), Lin Jiaping(林嘉平), Lv Zhongyuan(吕中元), MenYongfeng(门永锋), Shen Zhihao(沈志豪), Sun Pingchuan(孙平川), Tong Zhen(童真), Wang Dujin(王笃金), Wu Peiyi(武培怡), Xie Xuming(谢续明), Xu Jian(徐坚), Xu Zhikang(徐志康), Xue Gi(薛奇), Yan Shouke(闫寿科), Yang Yuliang(杨玉良), Yu Wei(俞炜), Yu Yanlei(俞燕蕾), Zhang Guangzhao(张广照), Zhang Jun(张军), Zhang Lina(张俐娜), Zhang Pingwen(张平文), Zhang Wenke(张文科), Zhao Jiang(赵江), Zheng Qiang(郑强), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 10 ): 1047 - 1067 . DOI:10.11777/j.issn1000-3304.2019.19118http://doi.org/10.11777/j.issn1000-3304.2019.19118 .
Geil P H, Ginzburg B M. J Macromol Sci B , 2006 . 45 ( 2 ): 291 - 323 . DOI:10.1080/00222340500522380http://doi.org/10.1080/00222340500522380 .
Dong Peng(董澎), Wang Ke(王柯), Li Junfang(李军方), Fu Qiang(傅强). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 1 ): 117 - 124 . DOI:10.11777/j.issn1000-3304.2020.19159http://doi.org/10.11777/j.issn1000-3304.2020.19159 .
Lv R, He Y, Wang J, Wang J, Hu J, Zhang J, Hu W. Polymer , 2019 . 174 123 - 129 . DOI:10.1016/j.polymer.2019.04.061http://doi.org/10.1016/j.polymer.2019.04.061 .
Kuang Xiao(匡晓), Liu Guoming(刘国明), Wen Tao(文韬), Zhang Xiuqin(张秀芹), Dong Xia(董侠), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报) , 2013 . ( 5 ): 679 - 687 . DOI:10.3724/SP.J.1105.2013.12423http://doi.org/10.3724/SP.J.1105.2013.12423 .
Hoffman J D, Davis G T, Lauritzen J I Jr. The Rate of Crystallization of Linear Polymers with Chain Folding. Boston: Plenum Press, 1976. 497 − 614
Wang Z, Hsiao B S, Sirota E B, Agarwal P, Srinivas S. Macromolecules , 2000 . 33 ( 3 ): 978 - 989 . DOI:10.1021/ma991468thttp://doi.org/10.1021/ma991468t .
Tashiro K, Sasaki S, Gose N, Kobayashi M. Polymer , 1998 . 30 ( 6 ): 485 - 491 . DOI:10.1295/polymj.30.485http://doi.org/10.1295/polymj.30.485 .
Strobl G. Eur Phys J E , 2000 . 3 ( 2 ): 165 - 183 . DOI:10.1007/s101890070030http://doi.org/10.1007/s101890070030 .
Al-Hussein M, Strobl G. Macromolecules , 2002 . 35 ( 5 ): 1672 - 1676 . DOI:10.1021/ma011345khttp://doi.org/10.1021/ma011345k .
Yuji H. Macromolecules , 2019 . 52 ( 16 ): 6201 - 6212 . DOI:10.1021/acs.macromol.9b00636http://doi.org/10.1021/acs.macromol.9b00636 .
Pawlak A, Galeski A. Macromolecules , 2005 . 38 ( 23 ): 9688 - 9697 . DOI:10.1021/ma050842ohttp://doi.org/10.1021/ma050842o .
Deblieck R A C, van Beek D J M, Remerie K, Ward I M. Polymer , 2011 . 52 ( 14 ): 2979 - 2990 . DOI:10.1016/j.polymer.2011.03.055http://doi.org/10.1016/j.polymer.2011.03.055 .
Young R J, Bowden P B, Ritchie J M, Rider J G. J Mater Sci , 1973 . 8 ( 1 ): 23 - 36 . DOI:10.1007/BF00755579http://doi.org/10.1007/BF00755579 .
Flory P J, Yoon D Y. Nature , 1978 . 272 ( 5650 ): 226 - 229 . DOI:10.1038/272226a0http://doi.org/10.1038/272226a0 .
Men Y, Strobl G. Macromolecules , 2003 . 36 ( 6 ): 1889 - 1898 . DOI:10.1021/ma025955bhttp://doi.org/10.1021/ma025955b .
Jiang Z, Tang Y, Rieger J, Enderle H F, Lilge D, Roth S V, Gehrke R, Wu Z, Li Z, Men Y. Polymer , 2009 . 50 ( 16 ): 4101 - 4111 . DOI:10.1016/j.polymer.2009.06.063http://doi.org/10.1016/j.polymer.2009.06.063 .
Lu Y, Men Y. Macromol Mater Eng , 2018 . 303 1800203 DOI:10.1002/mame.201800203http://doi.org/10.1002/mame.201800203 .
Xiong B, Lame O, Chenal J M, Rochas C, Seguela R, Vigier G. Polymer , 2013 . 54 ( 20 ): 5408 - 5418 . DOI:10.1016/j.polymer.2013.07.055http://doi.org/10.1016/j.polymer.2013.07.055 .
Xu Jiali(徐佳丽), Meng Lingpu(孟令蒲), Lin Yuanfei(林元菲), Chen Xiaowei(陈晓伟), Li Xueyu(李薛宇),Lei Caihong(雷彩红), Wang Wei(王卫), Li Liangbin(李良彬). Acta Polymerica Sinica(高分子学报) , 2015 . ( 4 ): 403 - 409 . DOI:10.11777/j.issn1000-3304.2015.14303http://doi.org/10.11777/j.issn1000-3304.2015.14303 .
Krajenta A, Rozanski A. J Polym Sci, Part B: Polym Phys , 2016 . 54 ( 18 ): 1853 - 1868 . DOI:10.1002/polb.24088http://doi.org/10.1002/polb.24088 .
Wang Y, Jiang Z, Fu L, Lu Y, Men Y. Plos One , 2014 . 9 ( 5 ): e9723 .
Men Y, Rieger J, Homeyer J. Macromolecules , 2004 . 37 ( 25 ): 9481 - 9488 . DOI:10.1021/ma048274khttp://doi.org/10.1021/ma048274k .
Lu Y, Men Y. Chinese J Polym Sci , 2018 . 36 ( 10 ): 1195 - 1199 . DOI:10.1007/s10118-018-2123-xhttp://doi.org/10.1007/s10118-018-2123-x .
Jiang Z, Liao T, Chen R, Men Y. Polymer , 2019 . 185 121984 DOI:10.1016/j.polymer.2019.121984http://doi.org/10.1016/j.polymer.2019.121984 .
Selles N, Cloetens P, Proudhon H, Morgeneyer T F, Klinkova O, Saintier N, Laiarinandrasana L. Macromolecules , 2017 . 50 ( 11 ): 4372 - 4383 . DOI:10.1021/acs.macromol.7b00727http://doi.org/10.1021/acs.macromol.7b00727 .
Rozanski A, Galeski A, Debowska M. Macromolecules , 2011 . 44 ( 1 ): 20 - 28 . DOI:10.1021/ma1018523http://doi.org/10.1021/ma1018523 .
Fu L, Jiang Z, Enderle H F, Lilge D, Wu Z, Funari S S, Men Y. J Polym Sci, Part B: Polym Phys , 2014 . 52 716 - 726 . DOI:10.1002/polb.23474http://doi.org/10.1002/polb.23474 .
Humbert S, Lame O, Chenal J M, Rochas C, Vigier G. Macromolecules , 2010 . 43 ( 17 ): 7212 - 7221 . DOI:10.1021/ma101042dhttp://doi.org/10.1021/ma101042d .
Peterlin A. J Mater Sci , 1971 . 6 ( 6 ): 490 - 508 . DOI:10.1007/BF00550305http://doi.org/10.1007/BF00550305 .
Butler M F, Donald A M, Bras W, Mant G R, Derbyshire G E, Ryan A J. Macromolecules , 1995 . 28 ( 19 ): 6383 - 6393 . DOI:10.1021/ma00123a001http://doi.org/10.1021/ma00123a001 .
Butler M F, Donald A M, Ryan A J. Polymer , 1998 . 39 ( 1 ): 39 - 52 . DOI:10.1016/S0032-3861(97)00226-7http://doi.org/10.1016/S0032-3861(97)00226-7 .
Butler M F, Donald A M. Macromolecules , 1998 . 31 ( 18 ): 6234 - 6249 . DOI:10.1021/ma970681rhttp://doi.org/10.1021/ma970681r .
Schneider K, Trabelsi S, Zafeiropoulos N E, Davies R, Riekel C, Stamm M. Macromol Symp , 2006 . 236 ( 1 ): 241 - 248 . DOI:10.1002/masy.200690062http://doi.org/10.1002/masy.200690062 .
Wunderlich B. Macromolecular physics. New York: Academic Press, 1973. 388
Jiang Z, Tang Y, Rieger J, Enderle H F, Lilge D, Roth S V, Gehrke R, Heckmann W, Men Y. Macromolecules , 2010 . 43 ( 10 ): 4727 - 4732 . DOI:10.1021/ma100303dhttp://doi.org/10.1021/ma100303d .
Ruland W. J Polym Sci Polym Symp , 1969 . 28 ( 1 ): 143 - 151 . DOI:10.1002/polc.5070280113http://doi.org/10.1002/polc.5070280113 .
Lu Y, Wang Y, Chen R, Zhao J, Jiang Z, Men Y. Macromolecules , 2015 . 48 ( 16 ): 5799 - 5806 . DOI:10.1021/acs.macromol.5b00818http://doi.org/10.1021/acs.macromol.5b00818 .
0
浏览量
35
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构