浏览全部资源
扫码关注微信
清华大学化学工程系 北京 100084
E-mail: yangr@mail.tsinghua.edu.cn
纸质出版日期:2021-2-3,
网络出版日期:2020-8-26,
收稿日期:2020-6-10,
修回日期:2020-7-5,
扫 描 看 全 文
安振华, 杨睿. 一种新型老化评价系统及在聚乙烯复合材料中的应用[J]. 高分子学报, 2021,52(2):196-203.
Zhen-hua An, Rui Yang. A Novel Aging Evaluation System and the Application to Polyethylene Composites[J]. Acta Polymerica Sinica, 2021,52(2):196-203.
安振华, 杨睿. 一种新型老化评价系统及在聚乙烯复合材料中的应用[J]. 高分子学报, 2021,52(2):196-203. DOI: 10.11777/j.issn1000-3304.2020.20150.
Zhen-hua An, Rui Yang. A Novel Aging Evaluation System and the Application to Polyethylene Composites[J]. Acta Polymerica Sinica, 2021,52(2):196-203. DOI: 10.11777/j.issn1000-3304.2020.20150.
建立了一种高灵敏度、多环境因素耦合的新型老化评价系统,可以实现在光、热、氧、湿等多种环境因素条件的耦合下,对高分子材料快速、灵敏、实时、无损的老化评价. 该系统被用于聚乙烯(PE)复合材料的稳定性和老化状态的评价以及PE老化动力学的研究. 结果表明,该系统测定的CO
2
生成速率与PE复合材料自然老化下的氧化程度具有良好的对应性,同时能够精确反映PE复合材料的自然老化状态—不同自然老化时间的PE复合材料,其CO
2
生成速率与羰基指数的对数呈线性关系. 此外,该系统还可以快速、准确地测定PE老化过程的活化能.
A novel aging evaluation system has been developed to realize a rapid
sensitive
non-destructive aging evaluation of polymer materials under various environmental conditions. Available conditions include irradiation
temperature
oxygen and humidity. This system can be used in the stability evaluation
aging status analysis and aging kinetics measurement by
in situ
detecting trace gaseous degradation products
such as CO
2
in a specially designed reaction cell by FTIR. In this study
polyethylene (PE) composites were used as an example. The generation rate of CO
2
of PE composites during a 4-h
in situ
detection corresponded well to the carbonyl index during a 120-day natural weathering
and the same stability ranking was obtained. In particular
there was a linear relationship between the generation rate of CO
2
and the natural logarithm of carbonyl index
indicating that the generation rate of CO
2
could be taken as a new evaluating index to rapidly detect aging status of PE composites. The activation energy of PE photo-oxidative aging was calculated based on the generation rates of CO
2
at different temperatures in the range of 30−80 °C
which was in agreements with the results reported in literature. The above facts prove the reliability and efficiency of this novel aging evaluation system. Meanwhile
the high sensitivity of the system would enable the determination of activation energies at low temperatures close to the actual operating conditions of materials
avoiding the uncertainty caused by the extrapolation of accelerated results from high temperature.
原位老化评价聚乙烯复合材料光氧老化动力学
In situ aging evaluationPolyethylene compositesPhotooxidative agingKinetics
Yang R. Analytical Methods for Polymer Characterization. 1st ed. Boca Raton: CRC Press, 2018
Wise J, Gillen K T, Clough R L. Polym Degrad Stabil , 1995 . 49 ( 3 ): 403 - 418 . DOI:10.1016/0141-3910(95)00137-Bhttp://doi.org/10.1016/0141-3910(95)00137-B .
Gillen K T, Celina M, Bernstein R. Polym Degrad Stabil , 2003 . 82 ( 1 ): 25 - 35 . DOI:10.1016/S0141-3910(03)00159-9http://doi.org/10.1016/S0141-3910(03)00159-9 .
Celina M, Wise J, Ottesen D K. Polym Degrad Stabil , 2000 . 68 ( 2 ): 171 - 185 . DOI:10.1016/S0141-3910(99)00183-4http://doi.org/10.1016/S0141-3910(99)00183-4 .
Gillen K T, Bernstein R, Derzon D K. Polym Degrad Stabil , 2005 . 87 ( 1 ): 57 - 67 . DOI:10.1016/j.polymdegradstab.2004.06.010http://doi.org/10.1016/j.polymdegradstab.2004.06.010 .
Gillen K T, Bernstein R, Celina M. Polym Degrad Stabil , 2005 . 87 ( 2 ): 335 - 346 . DOI:10.1016/j.polymdegradstab.2004.09.004http://doi.org/10.1016/j.polymdegradstab.2004.09.004 .
Gillen K T, Bernstein R, Clough R L, Celina M. Polym Degrad Stabil , 2006 . 91 ( 9 ): 2146 - 2156 . DOI:10.1016/j.polymdegradstab.2006.01.009http://doi.org/10.1016/j.polymdegradstab.2006.01.009 .
Celina M, Graham A C, Gillen K T, Assink R A, Minier L M. Rubber Chem Technol , 2000 . 73 ( 4 ): 678 - 693 . DOI:10.5254/1.3547613http://doi.org/10.5254/1.3547613 .
Herzig A, Johlitz M, Lion A. Continuum Mech Thermodyn , 2014 . 27 ( 6 ): 1009 - 1017 . DOI:10.1007/s00161-014-0396-zhttp://doi.org/10.1007/s00161-014-0396-z .
Matisova-Rychld L, Rychly J. Polym Degrad Stabil , 2000 . 67 ( 3 ): 515 - 525 . DOI:10.1016/S0141-3910(99)00153-6http://doi.org/10.1016/S0141-3910(99)00153-6 .
Jacobson K, Eriksson P, Reitberger T, Stenberg B. Adv Polym Sci , 2004 . 169 151 - 176 . DOI:10.1007/b13522http://doi.org/10.1007/b13522 .
Fedorova G, Trofimov A, Vasil’Ev R, Veprintsev T. Arkivoc , 2007 . 38 ( 9 ): 163 - 215 . DOI:10.3998/ark.5550190.0008.815http://doi.org/10.3998/ark.5550190.0008.815 .
Celina M, Trujillo A B, Gillen K T, Minier L M. Polym Degrad Stabil , 2006 . 91 ( 10 ): 2365 - 2374 . DOI:10.1016/j.polymdegradstab.2006.04.004http://doi.org/10.1016/j.polymdegradstab.2006.04.004 .
Celina M, Clough R, Jones G. Polymer , 2005 . 46 ( 14 ): 5161 - 5164 . DOI:10.1016/j.polymer.2005.04.033http://doi.org/10.1016/j.polymer.2005.04.033 .
Celina M, Clough R L, Jones G D. Polym Degrad Stabil , 2006 . 91 ( 5 ): 1036 - 1044 . DOI:10.1016/j.polymdegradstab.2005.07.022http://doi.org/10.1016/j.polymdegradstab.2005.07.022 .
Celina M, Clough R L. Polymer , 2006 . 47 ( 1 ): 289 - 292 . DOI:10.1016/j.polymer.2005.11.041http://doi.org/10.1016/j.polymer.2005.11.041 .
Watanabe C, Tsuge S, Ohtani H. Polym Degrad Stabil , 2009 . 94 ( 9 ): 1467 - 1472 . DOI:10.1016/j.polymdegradstab.2009.05.005http://doi.org/10.1016/j.polymdegradstab.2009.05.005 .
Yuzawa T, Watanabe C, Nemoto N, Ohtani H. Polym Degrad Stabil , 2013 . 98 ( 2 ): 671 - 676 . DOI:10.1016/j.polymdegradstab.2012.11.005http://doi.org/10.1016/j.polymdegradstab.2012.11.005 .
Christensen P A, Dilks A, Egerton T A, Temperley J. J Mater Sci , 1999 . 34 ( 23 ): 5689 - 5700 . DOI:10.1023/A:1004737630399http://doi.org/10.1023/A:1004737630399 .
Christensen P A, Dilks A, Egerton T A, Temperley J. J Mater Sci ,2000 . 35 ( 21 ): 5353 - 5358 . DOI:10.1023/A:1004898913140http://doi.org/10.1023/A:1004898913140 .
Jin C Q, Christensen P A, Egerton T A, White J R. Mater Sci Technol , 2013 . 22 ( 8 ): 908 - 914 . DOI:10.1179/174328406X91159http://doi.org/10.1179/174328406X91159 .
Fernando S S, Christensen P A, Egerton T A, White J R. Polym Degrad Stabil , 2007 . 92 ( 12 ): 2163 - 2172 . DOI:10.1016/j.polymdegradstab.2007.01.032http://doi.org/10.1016/j.polymdegradstab.2007.01.032 .
Fernando S S, Christensen P A, Egerton T A, White J R. Polym Degrad Stabil , 2009 . 94 ( 1 ): 83 - 89 . DOI:10.1016/j.polymdegradstab.2008.10.007http://doi.org/10.1016/j.polymdegradstab.2008.10.007 .
Yang R, Christensen P A, Egerton T A, White J R, Maltby A. J Appl Polym Sci , 2011 . 119 ( 3 ): 1330 - 1338 . DOI:10.1002/app.31669http://doi.org/10.1002/app.31669 .
Yang R, Christensen P A, Egerton T A, White J R. Polym Degrad Stabil , 2010 . 95 ( 9 ): 1533 - 1541 . DOI:10.1016/j.polymdegradstab.2010.06.010http://doi.org/10.1016/j.polymdegradstab.2010.06.010 .
Fechine G J M, Christensen P A, Egerton T A, White J R. Polym Degrad Stabil , 2009 . 94 ( 2 ): 234 - 239 . DOI:10.1016/j.polymdegradstab.2008.10.025http://doi.org/10.1016/j.polymdegradstab.2008.10.025 .
Liu X, Zhao J, Yang R, Iervolino R, Barbera S. Polym Degrad Stabil , 2016 . 128 ( 6 ): 99 - 106 . DOI:10.1016/j.polymdegradstab.2016.03.008http://doi.org/10.1016/j.polymdegradstab.2016.03.008 .
Liu X, Zhao J, Wang Y, Yang R. Chinese patent, CN103969186A. 2014-08-06
Yang R, Liu X, An Z. Chinese patent, CN208568584U. 2019-03-01
Long G L, Winefordner J D. Anal Chem , 1983 . 55 ( 7 ): 712 - 724 . DOI:10.1021/ac00258a001http://doi.org/10.1021/ac00258a001 .
Cruz-Pinto J J C, Carvalho M E S, Ferreira J F A. Angew Makromol Chem , 1994 . 216 ( 1 ): 113 - 133 . DOI:10.1002/apmc.1994.052160108http://doi.org/10.1002/apmc.1994.052160108 .
Carvalho M E S, Cruz-Pinto J J C. Polym Eng Sci , 1992 . 32 ( 8 ): 567 - 572 . DOI:10.1002/pen.760320808http://doi.org/10.1002/pen.760320808 .
0
浏览量
35
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构