浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 成都 610065
E-mail:liuzhying@scu.edu.cn
纸质出版日期:2021-3-3,
网络出版日期:2020-10-22,
收稿日期:2020-8-2,
修回日期:2020-8-25,
扫 描 看 全 文
刘仁鹏, 邹会昭, 黄炎昊, 刘正英, 杨伟, 杨鸣波. 基体分子运动对聚偏氟乙烯/碳纤维复合材料的聚合物基正温度系数性能的影响[J]. 高分子学报, 2021,52(3):312-320.
Ren-peng Liu, Hui-zhao Zou, Yan-hao Huang, Zheng-ying Liu, Wei Yang, Ming-bo Yang. Effect of Matrix Molecular Motion Ability on Positive Temperature Coefficient Behaviors of Poly(vinylidene fluoride)/Carbon Fibers Composite[J]. Acta Polymerica Sinica, 2021,52(3):312-320.
刘仁鹏, 邹会昭, 黄炎昊, 刘正英, 杨伟, 杨鸣波. 基体分子运动对聚偏氟乙烯/碳纤维复合材料的聚合物基正温度系数性能的影响[J]. 高分子学报, 2021,52(3):312-320. DOI: 10.11777/j.issn1000-3304.2020.20181.
Ren-peng Liu, Hui-zhao Zou, Yan-hao Huang, Zheng-ying Liu, Wei Yang, Ming-bo Yang. Effect of Matrix Molecular Motion Ability on Positive Temperature Coefficient Behaviors of Poly(vinylidene fluoride)/Carbon Fibers Composite[J]. Acta Polymerica Sinica, 2021,52(3):312-320. DOI: 10.11777/j.issn1000-3304.2020.20181.
聚合物基正温度系数(PTC)材料中,基体分子在熔体状态下的运动能力可显著影响填料分布、PTC强度及稳定重复性等,明确其机理有利于高灵敏性且稳定可重复的PTC复合材料的设计与制备. 通过探究基体熔体黏度不同的聚偏氟乙烯(PVDF)/碳纤维(CF)的电阻-温度响应行为,可以发现复合材料PTC转变温度区间仅取决于基体化学结构与结晶性,而PTC循环稳定性却受到基体分子运动能力的显著影响. 当基体分子运动能力较强时,分子链极易黏附填料在CF表面形成包覆层,导致局部填料间距增大到隧穿距离以上,不利于复合材料导电网络的重建,导致随热循环次数增加,复合材料的室温电阻率有所升高,PTC可重复性略微降低. 而对基体分子链缠结明显的PVDF/CF复合材料中,运动能力较弱的分子链不会包覆CF粒子,在多次升温-降温循环后导电通路能恢复到初始状态,复合材料呈现良好的PTC可重复性,将其应用于电路过热保护装置时,复合材料表现出灵敏的温度响应特性及可多次循环的开关特性.
Conductive polymer composites with positive temperature coefficient (PTC) effect have been widely utilized in electronic industry due to their low density
excellent processibility and abundant adjustability. At the melting temperature
the phase transition of crystalline region results in volume expansion
which leads to a dramatic increase in volume resistivity of the composite. Therefore
the PTC performances are highly correlated with the melting process and melt properties of polymer matrix
which means the motion ability of molecules chain during matrix melting affects the performances of the composite such as PTC intensity and reproducibility. Making a thorough inquiry of the effects of polymer molecular motility on PTC behavior is helpful for the design and fabrication of polymer based PTC materials with highly sensitive response to temperature and stable reproducibility in heating-cooling cycles. In this study
the resistance-temperature characteristic of carbon fibers (CF) filled poly(vinylidene fluoride) (PVDF) composites with varied melt viscosity of PVDF was investigated. All the samples showed significant PTC effect during heating processes without negative temperature coefficient (NTC) effect even at temperatures much higher than the melting point of polymer matrix. It can be found that the PTC transition temperature range depended only on the chemical structure and crystallinity of PVDF
while the cyclic stability of PTC behavior was significantly affected by the motion ability of the matrix molecules. For the PVDF(710)/CF composite with matrix of stronger molecular motion
during the heating cycles
the molecular chains possibly stuck to the fillers surface to form an insulating layer
which resulted in wider gaps between fillers and thus reduced tunneling current. After cooling
the reconstruction of conductive paths in composites was impeded
resulting in higher resistivity at room temperature
lower PTC intensity and worse reproducibility. On the contrary
in the PVDF(5130)/CF composites with higher matrix viscosity
the molecular chains with weaker motion ability would not cover CF particles. The composite could almost rebuild the conductive paths to the initial condition after heating-cooling cycles
thus stabilizing a better PTC reproducibility and stable resistivity at room temperature. When applied in the circuit overheat protection device
the PVDF(5130)/CF composite shut off the current timely at 167 °C and recovered the circuit when cooled down
exhibiting excellent sensitivity and reproducibility as thermal responsive switch.
聚偏氟乙烯导电高分子材料正温度系数分子链运动能力
Poly(vinylidene fluoride)Conductive polymer compositePositive temperature coefficientMolecular motility
Liu Y, Zhang H, Porwal H, Busfield J J C, Peijs T, Bilotti E . Polym Int , 2019 . 68 ( 3 ): 299 - 305 . DOI:10.1002/pi.5735http://doi.org/10.1002/pi.5735 .
Chen L, Hou J R, Chen Y W, Wang H J, Duan Y X, Zhang J M . Compos Part B Eng , 2019 . 178 107465 DOI:10.1016/j.compositesb.2019.107465http://doi.org/10.1016/j.compositesb.2019.107465 .
Zhang P, Wang B B . J Appl Polym Sci , 2018 . 135 ( 27 ): 46453 DOI:10.1002/app.46453http://doi.org/10.1002/app.46453 .
Liu Y, Zhang H, Porwal H, Tu W, Wang K N, Evans J, Newton M, Busfield J J C, Peijs T, Bilotti E . J Mater Chem C , 2018 . 6 ( 11 ): 2760 - 2768 . DOI:10.1039/c7tc05621dhttp://doi.org/10.1039/c7tc05621d .
Motloung B T, Dudic D, Mofokeng J P, Luyt A S . J Polym Res , 2017 . 24 43 DOI:10.1007/s10965-017-1205-8http://doi.org/10.1007/s10965-017-1205-8 .
Asare E, Basir A, Tu W, Porwal H, Zhang H, Liu Y, Evans J, Newton M, Peijs T, Bilotti E . Nanocomposite , 2016 . 2 ( 2 ): 58 - 64 . DOI:10.1080/20550324.2016.1192796http://doi.org/10.1080/20550324.2016.1192796 .
Zhang X, Zheng S D, Zou H Z, Zheng X F, Liu Z Y, Yang W, Yang M B . Compos Part A: Appl Sci Manuf , 2017 . 94 21 - 31 . DOI:10.1016/j.compositesa.2016.12.001http://doi.org/10.1016/j.compositesa.2016.12.001 .
Kono A, Shimizu K, Nakano H, Goto Y, Kobayashi Y, Ougizawa T, Horibe H . Polymer , 2012 . 53 ( 8 ): 1760 - 1764 . DOI:10.1016/j.polymer.2012.02.048http://doi.org/10.1016/j.polymer.2012.02.048 .
Chen Z, Hsu P C, Lopez J, Li Y, To J W F, Liu N, Wang C, Andrews S C, Liu J, Cui Y, Bao Z N . Nat Energy , 2016 . 1 15009 - 15017 . DOI:10.1038/nenergy.2015.9http://doi.org/10.1038/nenergy.2015.9 .
Zha J W, Wu D H, Yang Y, Wu Y H, Li R K Y, Dang Z M . RSC Adv , 2017 . 7 11338 - 11344 . DOI:10.1039/c6ra27367jhttp://doi.org/10.1039/c6ra27367j .
Wu Linhui(吴林辉), Ye Shuangli(叶双莉) . Mod Chem Ind(现代化工) , 2019 . 39 ( 5 ): 76 - 80 . DOI:10.16606/j.cnki.issn0253-4320.2019.05.017http://doi.org/10.16606/j.cnki.issn0253-4320.2019.05.017 .
Jeon J, Lee H B R, Bao Z . Adv Mater , 2013 . 25 ( 6 ): 850 - 855 . DOI:10.1002/adma.201204082http://doi.org/10.1002/adma.201204082 .
Liu Y, Zhang H, Porwal H, Tu W, Evans J, Newton M, Busfield J J C, Peijs T, Bilotti E . Adv Funct Mater , 2017 . 27 ( 39 ): 1702253 - 1702262 . DOI:10.1002/adfm.201702253http://doi.org/10.1002/adfm.201702253 .
Zhao S G, Li G J, Liu H, Dai K, Zheng G Q, Yan X R, Liu C T, Chen J B, Shen C Y, Guo Z H . Adv Mater Interfaces , 2017 . 4 ( 17 ): 1700265 DOI:10.1002/admi.201700265http://doi.org/10.1002/admi.201700265 .
Zhang C, Ma C A, Wang P, Sumita M . Carbon , 2005 . 43 ( 12 ): 2544 - 2553 . DOI:10.1016/j.carbon.2005.05.006http://doi.org/10.1016/j.carbon.2005.05.006 .
Qu Y Y, Xu P, Liu H, Li Q M, Wang N, Zhao S G, Zheng G Q, Dai K, Liu C T, Shen C Y . J Compos Mater , 2019 . 53 ( 14 ): 1897 - 1906 . DOI:10.1177/0021998318815731http://doi.org/10.1177/0021998318815731 .
Tiptipakorn S, Kuengputpong N, Okhawilai M, Rimdusit S . J Appl Polym Sci , 2020 . 137 ( 12 ): 48482 - 48491 . DOI:10.1002/app.48482http://doi.org/10.1002/app.48482 .
Zou Huizhao(邹会昭), Zhang Xi(张习), Zheng Shaodi(郑少笛), Yang Wei(杨伟), Liu Zhengying(刘正英), Yang Mingbo(杨鸣波), Feng Jianming(冯建明) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1215 - 1219 . DOI:10.11777/j.issn1000-3304.2017.17090http://doi.org/10.11777/j.issn1000-3304.2017.17090 .
Nakagawa K, Ishida Y . J Polym Sci Polym Phys , 1973 . 11 2153 - 2171 . DOI:10.1002/pol.1973.180111107http://doi.org/10.1002/pol.1973.180111107 .
Pötschke P, Bhattacharyya A R, Janke A . Carbon , 2004 . 42 ( 5-6 ): 965 - 969 . DOI:10.1016/j.carbon.2003.12.001http://doi.org/10.1016/j.carbon.2003.12.001 .
0
浏览量
33
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构