浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京分子科学国家实验室 北京 100190
2.中国科学院大学 北京 100049
3.北京服装学院材料科学与工程学院 北京 100029
E-mail: xiadong@iccas.ac.cn Xia Dong, E-mail: xiadong@iccas.ac.cn
纸质出版日期:2021-3-3,
网络出版日期:2020-11-17,
收稿日期:2020-8-25,
修回日期:2020-10-3,
扫 描 看 全 文
周臣旭, 董思远, 朱平, 刘继广, 董侠, 王笃金. 线性脂环族聚酰胺化学结构对其力学和光学性能的影响[J]. 高分子学报, 2021,52(3):297-303.
Chen-xu Zhou, Si-yuan Dong, Ping Zhu, Ji-guang Liu, Xia Dong, Du-jin Wang. Effects of Linear Alicyclic Polyamide Chemical Structure on the Mechanical and Optical Properties[J]. Acta Polymerica Sinica, 2021,52(3):297-303.
周臣旭, 董思远, 朱平, 刘继广, 董侠, 王笃金. 线性脂环族聚酰胺化学结构对其力学和光学性能的影响[J]. 高分子学报, 2021,52(3):297-303. DOI: 10.11777/j.issn1000-3304.2020.20200.
Chen-xu Zhou, Si-yuan Dong, Ping Zhu, Ji-guang Liu, Xia Dong, Du-jin Wang. Effects of Linear Alicyclic Polyamide Chemical Structure on the Mechanical and Optical Properties[J]. Acta Polymerica Sinica, 2021,52(3):297-303. DOI: 10.11777/j.issn1000-3304.2020.20200.
以重复单元结构不同的3种线性脂环族聚酰胺(LATPA)材料为研究对象,通过核磁共振谱、红外光谱、热分析、X射线衍射等技术,研究了链结构单元的侧基、端基对材料聚集态结构的影响,并对比研究了不同聚集态结构材料的宏观力学性能和光学透明性差异,建立了链结构、聚集态结构与力学性能、光学性能的关系. 研究发现,侧基带来的大空间位阻降低了LATPA的结晶度,提高了材料的玻璃化转变温度;较长的柔性端基分子链有助于高分子链的有序规整排列,可生成尺寸很小的微晶;聚集态结构直接影响材料的力学和光学性能,无定形LATPA和含有微晶结构的LATPA都具有良好的光学透明性,前者的透明性更高,后者的综合力学性能更好.
The three kinds of linear alicyclic polyamides (LATPA) with different repeating units were studied by a combination of Nuclear magnetic resonance spectroscopy (NMR)
Fourier transform infrared spectroscopy (FTIR)
thermal analysis
X-ray diffraction (XRD). The influence of the side and terminal groups of the chain structure on the aggregation structure of materials was discussed. The mechanical properties and optical transparences of LATPA with different aggregation structures were also compared. The relationship between chain structure
aggregation structure
and mechanical and optical properties was established. The results indicated that the steric hindrance of the side group prevented the chains to get organized orderly and reduced the crystallinity of LATPA
moreover
increased the glass transition temperature (
T
g
) of the material. The polymer chains can be packed more regularly and the crystallization can be boosted if the terminal extender groups are flexible aliphatic segments. The aggregation structures directly affect the mechanical properties. All LATPAs with amorphous and microcrystalline structures have excellent optical transparency. The former has slightly higher transparency
while the latter has the highest tensile strength and modulus
which is the contribution of microcrystalline structures to mechanical properties.
线性脂环族聚酰胺链结构聚集态结构力学性能光学透明性
Linear alicyclic polyamideChain structureAggregation structureMechanical propertiesOptical transparency
Miri V, Persy O, Lefebvre J M, Seguela R . Eur Polym J , 2009 . 45 ( 3 ): 757 - 762 . DOI:10.1016/j.eurpolymj.2008.12.008http://doi.org/10.1016/j.eurpolymj.2008.12.008 .
Liu X R, Wang Y, Liu L Y, Dong X, Wang D J . Chinese J Polym Sci , 2020 . 38 ( 9 ): 993 - 998 . DOI:10.1007/s10118-020-2434-6http://doi.org/10.1007/s10118-020-2434-6 .
Wang L L, Dong X, Zhu P, Zhang X Q, Liu X R, Wang D J . Eur Polym J , 2017 . 90 171 - 182 . DOI:10.1016/j.eurpolymj.2017.02.047http://doi.org/10.1016/j.eurpolymj.2017.02.047 .
Lai Yue(来悦), Wang Yu(王煜), Wang Lili(王莉莉), Li Xuan(李璇), Zhao Jingbo(赵京波), Dong Xia(董侠), Wang Dujin(王笃金) . Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 11 ): 1267 - 1274 . DOI:10.11777/j.issn1000-3304.2020.20057http://doi.org/10.11777/j.issn1000-3304.2020.20057 .
Yao Zhen(姚臻), Zhou Yadan(周亚单), Cao Kun(曹堃) . Chemical Industry and Engineering Progress(化工进展) , 2014 . 33 ( 12 ): 3276 - 3280.
Liu F L, He J J, Yang H X, Yang S Y . Chinese J Polym Sci , 2020 . 38 1345 - 1354 . DOI:10.1007/s10118-020-2445-3http://doi.org/10.1007/s10118-020-2445-3 .
Zhang G, Bai D T, Li D S, Long S R, Wang X J, Yang J . Polym Int , 2013 . 62 ( 9 ): 1358 - 1367 . DOI:10.1002/pi.4431http://doi.org/10.1002/pi.4431 .
Zhang G, Zhou Y X, Kong Y, Li Z M, Long S R, Yang J . RSC Adv , 2014 . 4 ( 108 ): 63006 - 63015 . DOI:10.1039/C4RA10074Chttp://doi.org/10.1039/C4RA10074C .
Behniafar H, Abedini-Pozveh A . Polym Degrad Stabil , 2011 . 96 ( 7 ): 1327 - 1332 . DOI:10.1016/j.polymdegradstab.2011.03.018http://doi.org/10.1016/j.polymdegradstab.2011.03.018 .
Zhang W, He J, Yin X, Wang L, Chen R, Wang Y . Compos Commun , 2020 . 20 100361 DOI:10.1016/j.coco.2020.100361http://doi.org/10.1016/j.coco.2020.100361 .
Chen J, Qu L, Li X, Jiang A, Niu M, Wang J . J Appl Polym Sci , 2005 . 97 ( 4 ): 1586 - 1589 . DOI:10.1002/app.21607http://doi.org/10.1002/app.21607 .
Zou G, Wang P, Feng W, Ren Z, Ji J. . J Appl Polym Sci , 2019 . 136 ( 13 ): 47305 - 47316 . DOI:10.1002/app.47305http://doi.org/10.1002/app.47305 .
Dong Siyuan(董思远), Zhu Ping(朱平), Liu Jiguang(刘继广), Wang Dujin(王笃金), Dong Xia(董侠) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 2 ): 189 - 198 . DOI:10.11777/j.issn1000-3304.2018.18198http://doi.org/10.11777/j.issn1000-3304.2018.18198 .
Dencheva N, Denchev Z, Oliveira M J, Funari S S . J Appl Polym Sci , 2007 . 103 ( 4 ): 2242 - 2252 . DOI:10.1002/app.25250http://doi.org/10.1002/app.25250 .
Wang L L, Dong X, Huang M M, Müller A J, Wang D J . Polymer , 2017 . 117 231 - 242 . DOI:10.1016/j.polymer.2017.04.038http://doi.org/10.1016/j.polymer.2017.04.038 .
Tec-Sanchez J A, Arias A I O, Aguilar-Vega M, Cauich-Rodriguez J V, Santiago-Garcia J L . Chinese J Polym Sci , 2019 . 37 ( 2 ): 136 - 141 . DOI:10.1007/s10118-019-2190-7http://doi.org/10.1007/s10118-019-2190-7 .
Suchocki C, Molak R . Chinese J Polym Sci , 2019 . 37 ( 2 ): 178 - 188 . DOI:10.1007/s10118-019-2180-9http://doi.org/10.1007/s10118-019-2180-9 .
Cui X W, Yan D Y . Eur Polym J , 2005 . 41 863 - 870 . DOI:10.1016/j.eurpolymj.2004.10.045http://doi.org/10.1016/j.eurpolymj.2004.10.045 .
Zhu P, Dong X, Wang D J . Macromolecules , 2017 . 50 3912 - 3922.
Zhu P, Dong X, Cao Y Y, Wang L L, Liu X R, Wang Z F, Wang D J . Eur Polym J , 2017 . 93 334 - 346 . DOI:10.1016/j.eurpolymj.2017.06.017http://doi.org/10.1016/j.eurpolymj.2017.06.017 .
Zhou C X, Qi S X, Zhu P, Zhao Y, Xu Y Z, Dong X, Wang D J . Polymer , 2020 . 190 12231 .
Yan X, Zhu X Y, Liang C, Peng H, Yan D Y, Wang X G . J Polym Sci, Part B: Polym Phys , 2004 . 42 60 - 63 . DOI:10.1002/polb.10677http://doi.org/10.1002/polb.10677 .
Yan D Y, Li Y J, Zhu X Y . Macromol Rapid Commun , 2000 . 21 1040 - 1043 .DOI:10.1002/1521-3927(20001001)21:15<1040::AID-MARC1040>3.0.CO;2-Xhttp://doi.org/10.1002/1521-3927(20001001)21:15<1040::AID-MARC1040>3.0.CO;2-X .
Vasanthan N, Murthy N S, Bray R G . Macromolecules , 1998 . 31 8433 - 8435 . DOI:10.1021/ma980935ohttp://doi.org/10.1021/ma980935o .
Heidemann V G, Zahn H . Macromol Chem Phys , 1963 . 62 123 - 133 . DOI:10.1002/macp.1963.020620113http://doi.org/10.1002/macp.1963.020620113 .
Wang L L, Dong X, Huang M M, Muller A J, Wang D J . ACS Appl Mater Interfaces , 2017 . 9 19238 - 19247 . DOI:10.1021/acsami.7b04691http://doi.org/10.1021/acsami.7b04691 .
Zhang W, Chen L, Zhang Y . Polymer , 2009 . 50 1311 - 1315 . DOI:10.1016/j.polymer.2009.01.032http://doi.org/10.1016/j.polymer.2009.01.032 .
Cui X W, Li W H, Yan D Y . Polym Int , 2004 . 53 1729 - 1734 . DOI:10.1002/pi.1546http://doi.org/10.1002/pi.1546 .
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构