浏览全部资源
扫码关注微信
1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 230026
2.华南理工大学材料科学与工程学院 广州 510640
[ "刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面." ]
[ "张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Journal of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作." ]
纸质出版日期:2021-07-20,
网络出版日期:2021-01-26,
收稿日期:2020-11-13,
修回日期:2020-12-04,
扫 描 看 全 文
袁海洋,马春风,刘光明等.石英晶体微天平在高分子研究中的应用[J].高分子学报,2021,52(07):806-821.
Yuan Hai-yang,Ma Chun-feng,Liu Guang-ming,et al.Applications of Quartz Crystal Microbalance in Polymer Studies[J].ACTA POLYMERICA SINICA,2021,52(07):806-821.
袁海洋,马春风,刘光明等.石英晶体微天平在高分子研究中的应用[J].高分子学报,2021,52(07):806-821. DOI: 10.11777/j.issn1000-3304.2020.20248.
Yuan Hai-yang,Ma Chun-feng,Liu Guang-ming,et al.Applications of Quartz Crystal Microbalance in Polymer Studies[J].ACTA POLYMERICA SINICA,2021,52(07):806-821. DOI: 10.11777/j.issn1000-3304.2020.20248.
石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.
In this review
the authors introduce the brief history
basic principles
sample preparation
and applications of quartz crystal microbalance (QCM). With the development of QCM technique
the quartz crystal microbalance with dissipation (QCM-D) has been employed to carry out the studies in a wide range of fields of polymer films because it can simultaneously obtain the information on the changes in mass and stiffness of polymer films. Moreover
the combined QCM-D and spectroscopic ellipsometry (QCM-D/SE) technique can be used to further obtain the thickness change and other information of polymer films. To demonstrate the applications of QCM-D in polymer studies
this review presents how the QCM-D and QCM-D/SE can be used to study the conformational behaviors of polymers grafted at interfaces
the ionic effects on polymers
and the polymeric marine antifouling materials. Specifically
(i) QCM-D can be used to study both the conformational behaviors of grafted polymers during the pancake-to-brush and mushroom-to-brush transitions and the stimuli-responsive behaviors of grafted polymers with temperature
pH
and salt concentration as the external stimuli; (ii) QCM-D/SE can be applied to study the ionic effects on polyelectrolyte brushes including specific ion effects
ionic hydrogen bond effects
and ionic hydrophilicity/hydrophobicity effects. The relevant studies can not only clarify the mechanisms of the ionic effects on polyelectrolyte brushes
but also demonstrate that the properties of polyelectrolyte brushes can be tuned with these ionic effects; (iii) QCM-D can be employed to evaluate the performance of polymeric marine antifouling materials
providing a method to screen the materials in laboratory
saving much time and money for marine field tests. The authors hope that this review can provide an inspiration on how to apply QCM-D to carry out polymer studies
enabling this technique to solve more problems in the field of polymers.
石英晶体微天平高分子刷聚电解质离子效应海洋防污材料
Quartz crystal microbalancePolymer brushesPolyelectrolytesIonic effectsMarine antifouling materials
Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90-93. doi:10.3406/bulmi.1880.1564http://dx.doi.org/10.3406/bulmi.1880.1564
Cady W G. Proc IRE, 1922, 10(2): 83-114. doi:10.1109/jrproc.1922.219800http://dx.doi.org/10.1109/jrproc.1922.219800
Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453-463. doi:10.1002/j.1538-7305.1934.tb00674.xhttp://dx.doi.org/10.1002/j.1538-7305.1934.tb00674.x
Sauerbrey G Z. Z Phys, 1959, 155: 206-222. doi:10.1007/bf01337937http://dx.doi.org/10.1007/bf01337937
Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012
Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281-284. doi:10.1016/s0003-2670(01)95290-0http://dx.doi.org/10.1016/s0003-2670(01)95290-0
Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924-3930. doi:10.1063/1.1145396http://dx.doi.org/10.1063/1.1145396
Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972-1978. doi:10.1002/marc.201100455http://dx.doi.org/10.1002/marc.201100455
Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69-75. doi:10.1038/s41563-018-0215-1http://dx.doi.org/10.1038/s41563-018-0215-1
Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837-3844. doi:10.1021/acssuschemeng.6b02884http://dx.doi.org/10.1021/acssuschemeng.6b02884
Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172-2183. doi:10.1039/c8en00508ghttp://dx.doi.org/10.1039/c8en00508g
Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960-13968. doi:10.1021/acs.analchem.8b03411http://dx.doi.org/10.1021/acs.analchem.8b03411
Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750-41757. doi:10.1021/acsami.9b16775http://dx.doi.org/10.1021/acsami.9b16775
Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48-56. doi:10.1016/j.foodhyd.2019.01.007http://dx.doi.org/10.1016/j.foodhyd.2019.01.007
Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982
Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004-4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2http://dx.doi.org/10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2
Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1-8. doi:10.1007/978-3-642-39790-5http://dx.doi.org/10.1007/978-3-642-39790-5
Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770-1771. doi:10.1021/ac00285a062http://dx.doi.org/10.1021/ac00285a062
Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448-456. doi:10.1016/s0924-4247(97)80002-7http://dx.doi.org/10.1016/s0924-4247(97)80002-7
Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391-396. doi:10.1238/physica.regular.059a00391http://dx.doi.org/10.1238/physica.regular.059a00391
Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425-447. doi:10.1007/978-3-540-36568-6http://dx.doi.org/10.1007/978-3-540-36568-6
Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157-3163. doi:10.1016/j.polymer.2006.02.091http://dx.doi.org/10.1016/j.polymer.2006.02.091
Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603-22607. doi:10.1021/jp0538417http://dx.doi.org/10.1021/jp0538417
He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090-3096. doi:10.1021/ma062613nhttp://dx.doi.org/10.1021/ma062613n
Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100-6106. doi:10.1021/la703661zhttp://dx.doi.org/10.1021/la703661z
Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933-3942. doi:10.1039/c9py00587khttp://dx.doi.org/10.1039/c9py00587k
Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017-4024. doi:10.1021/am4054578http://dx.doi.org/10.1021/am4054578
Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157-11166. doi:10.1021/acs.langmuir.9b01740http://dx.doi.org/10.1021/acs.langmuir.9b01740
Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752-759. doi:10.3724/sp.j.1096.2010.00752http://dx.doi.org/10.3724/sp.j.1096.2010.00752
He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679-1698
Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127-1136
Marx K A. Biomacromolecules, 2003, 4(5): 1099-1120. doi:10.1021/bm020116ihttp://dx.doi.org/10.1021/bm020116i
Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925-938. doi:10.1021/ma030297whttp://dx.doi.org/10.1021/ma030297w
Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528. doi:10.1155/2014/373528http://dx.doi.org/10.1155/2014/373528
Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51-124. doi:10.1002/polb.20640http://dx.doi.org/10.1002/polb.20640
Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372-395
Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63-77
Zhang G Z. Macromolecules, 2004, 37(17): 6553-6557. doi:10.1021/ma035937+http://dx.doi.org/10.1021/ma035937+
Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743-747. doi:10.1021/jp046903mhttp://dx.doi.org/10.1021/jp046903m
Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4-5): 328-335. doi:10.1002/marc.200800611http://dx.doi.org/10.1002/marc.200800611
Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137-10141. doi:10.1021/jp801533rhttp://dx.doi.org/10.1021/jp801533r
Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880-2886. doi:10.1039/c0cp01994ahttp://dx.doi.org/10.1039/c0cp01994a
Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247-260. doi:10.1007/bf01918191http://dx.doi.org/10.1007/bf01918191
Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197-1198. doi:10.1126/science.1152799http://dx.doi.org/10.1126/science.1152799
Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006-1009. doi:10.1126/science.1183512http://dx.doi.org/10.1126/science.1183512
Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716-7721. doi:10.1073/pnas.0913376107http://dx.doi.org/10.1073/pnas.0913376107
Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352-353. doi:10.1002/anie.201004501http://dx.doi.org/10.1002/anie.201004501
Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039-10046. doi:10.1021/ja301297ghttp://dx.doi.org/10.1021/ja301297g
Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213-218
Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155-6158. doi:10.1021/ja412952yhttp://dx.doi.org/10.1021/ja412952y
Collins K D. Methods, 2004, 34(3): 300-311. doi:10.1016/j.ymeth.2004.03.021http://dx.doi.org/10.1016/j.ymeth.2004.03.021
Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358-7377. doi:10.1039/c4cs00144chttp://dx.doi.org/10.1039/c4cs00144c
Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461-10468. doi:10.1021/acs.langmuir.5b02698http://dx.doi.org/10.1021/acs.langmuir.5b02698
Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34-39. doi:10.1016/j.cocis.2009.11.008http://dx.doi.org/10.1016/j.cocis.2009.11.008
Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352-12367. doi:10.1039/c1cp20538bhttp://dx.doi.org/10.1039/c1cp20538b
Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68-80. doi:10.1039/c6sm01773hhttp://dx.doi.org/10.1039/c6sm01773h
Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419-12427. doi:10.1021/acs.langmuir.8b02776http://dx.doi.org/10.1021/acs.langmuir.8b02776
Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588-6596. doi:10.1021/la401069yhttp://dx.doi.org/10.1021/la401069y
Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087-4104. doi:10.1039/d0sm00199fhttp://dx.doi.org/10.1039/d0sm00199f
Manning G S. Acc Chem Res, 1979, 12(12): 443-449. doi:10.1021/ar50144a004http://dx.doi.org/10.1021/ar50144a004
Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579. doi:10.1126/sciadv.1600579http://dx.doi.org/10.1126/sciadv.1600579
Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838-6845. doi:10.1021/acs.langmuir.7b01395http://dx.doi.org/10.1021/acs.langmuir.7b01395
Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930-10933. doi:10.1039/d0cc03763jhttp://dx.doi.org/10.1039/d0cc03763j
Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163-2178. doi:10.1039/c4py01665chttp://dx.doi.org/10.1039/c4py01665c
Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862-16868. doi:10.1021/acs.langmuir.9b02982http://dx.doi.org/10.1021/acs.langmuir.9b02982
Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239-256. doi:10.3390/jfb3020239http://dx.doi.org/10.3390/jfb3020239
Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467-9472. doi:10.1021/la900669phttp://dx.doi.org/10.1021/la900669p
Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337-342. doi:10.1007/s10118-012-1158-7http://dx.doi.org/10.1007/s10118-012-1158-7
Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099-3106. doi:10.1039/c3tb20454ehttp://dx.doi.org/10.1039/c3tb20454e
0
浏览量
292
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构