浏览全部资源
扫码关注微信
1.武汉理工大学,材料科学与工程学院,武汉 430070
2.武汉理工大学,理学院,武汉 430070
E-mail: yifengwang@whut.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-04-16,
收稿日期:2020-11-21,
修回日期:2020-12-25,
扫 描 看 全 文
刘慧,杨逸霏,曹凯元等.微波法制备氮掺杂碳点/海藻酸纳米复合物及其电沉积技术研究[J].高分子学报,2021,52(07):741-749.
Hui Liu, Yi-fei Yang, Kai-yuan Cao, Jie Yin, Yan-fei Xiong, Chuan-dong Shi, Yi-feng Wang. Electrodeposition of Nitrogen-doped Carbon Dots/Alginate Nanocomposite Fabricated by Microwave Method[J]. ACTA POLYMERICA SINICA, 2021,52(7):741-749.
刘慧,杨逸霏,曹凯元等.微波法制备氮掺杂碳点/海藻酸纳米复合物及其电沉积技术研究[J].高分子学报,2021,52(07):741-749. DOI: 10.11777/j.issn1000-3304.2020.20252.
Hui Liu, Yi-fei Yang, Kai-yuan Cao, Jie Yin, Yan-fei Xiong, Chuan-dong Shi, Yi-feng Wang. Electrodeposition of Nitrogen-doped Carbon Dots/Alginate Nanocomposite Fabricated by Microwave Method[J]. ACTA POLYMERICA SINICA, 2021,52(7):741-749. DOI: 10.11777/j.issn1000-3304.2020.20252.
以海藻酸为碳源,乙二胺为氮掺杂剂,采用简单方便的微波法制备得到氮掺杂碳点(N-CDs)/海藻酸纳米复合物. 通过透射电镜观察到所制得的N-CDs/海藻酸纳米复合物有纳米粒子存在,它们的平均粒径为4.6 nm. 荧光性能分析表明N-CDs/海藻酸纳米复合物在365 nm紫外光下呈现明显的蓝色荧光,并且其荧光发射性能具有激发光波长依赖性. N-CDs/海藻酸纳米复合物还保留了海藻酸与Ca
2+
作用形成凝胶的性能以及与一些二价金属离子的配位能力,可以直接应用于阳极电沉积和配位电沉积. 利用电沉积技术具有空间选择性和时间可控性的特点,可以在电极上构建不同形状和荧光图案的N-CDs/海藻酸电沉积膜,还可以对电沉积膜的厚度进行调控. 此外,利用电沉积技术制备的N-CDs/海藻酸电沉积膜电极可用于进行电化学检测.
Herein
a nitrogen-doped carbon dots (N-CDs)/alginate nanocomposite was prepared by a simple and convenient microwave method. In this method
alginate served as the carbon source and ethylenediamine served as the nitrogen dopant. Transmission electron microscopy (TEM) observation shows that there exist nanoparticles in the N-CDs/alginate nanocomposite with the average size of 4.6 nm. The fluorescence properties of the N-CDs/alginate nanocomposite were analyzed using fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorption spectroscopy. The UV-Vis spectrum of the N-CDs/alginate nanocomposite shows a broad absorption peak from 300 nm to 350 nm
which is attributed to N-CDs in the nanocomposite. The photoluminescence spectrum of the N-CDs/alginate nanocomposite shows a typical excitation-dependent photoluminescence feature. Moreover
the N-CDs/alginate nanocomposite presents a clear blue fluorescence under 365 nm UV light. The nanocomposite retains the property of alginate to bind Ca
2+
to induce the gelation of alginate
which can be used to perform the anodic electrodeposition of the N-CDs/alginate nanocomposite. On the other hand
it also retains the coordinated capability of alginate to interact with metal ions (such as Zn
2+
) to form a gel
which can be employed to carry out the coordination electrodeposition of the N-CDs/alginate nanocomposite. By taking advantage of the spatial selectivity of electrodeposition technique
the deposited N-CDs/alginate nanocomposite films with specific shapes and fluorescence patterns can be conveniently fabricated on electrodes. The thickness of the electrodeposited N-CDs/alginate film increases with the increase of electrodeposition time
which provides a controllable means to produce the electrodeposited N-CDs/alginate film with different thicknesses. Furthermore
the electrodeposition of the N-CDs/alginate nanocomposite enables a facile way to generate CDs nanocomposite film modified electrodes to conduct electrochemical detection. Thus
the N-CDs/alginate nanocomposite prepared by the microwave method has potential applications in fluorescence imaging and electrochemical detection.
电沉积技术碳点海藻酸微波法天然高分子
Electrodeposition techniqueCarbon dotsAlginateMicrowave methodBiopolymer
Lim S Y, Shen W, Guo Z Q. Chem Soc Rev, 2015, 44(1): 362‒381. doi:10.1039/c4cs00269ehttp://dx.doi.org/10.1039/c4cs00269e
Zhang L L, Han Y J, Zhu J B, Zhai Y L, Dong S J. Anal Chem, 2015, 87(4): 2033‒2036. doi:10.1021/ac5043686http://dx.doi.org/10.1021/ac5043686
Lu Siyu(卢思宇), Yang Bai(杨柏). Acta Polymerica Sinica(高分子学报), 2017, (7): 1200‒1206. doi:10.11777/j.issn1000-3304.2017.17070http://dx.doi.org/10.11777/j.issn1000-3304.2017.17070
Meng W X, Bai X, Wang B Y, Liu Z Y, Lu S Y, Yang B. Energy Environ Mater, 2019, 2(3): 172‒192. doi:10.1002/eem2.12038http://dx.doi.org/10.1002/eem2.12038
Lu S Y, Sui L Z, Liu J J, Zhu S J, Chen A M, Jin M X, Yang B. Adv Mater, 2017, 29(15): 1603443. doi:10.1002/adma.201603443http://dx.doi.org/10.1002/adma.201603443
Wang B Y, Li J, Tang Z Y, Yang B, Lu S Y. Sci Bull, 2019, 64(17): 1285‒1292. doi:10.1016/j.scib.2019.07.021http://dx.doi.org/10.1016/j.scib.2019.07.021
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J Am Chem Soc, 2004, 126(40): 12736‒12737. doi:10.1021/ja040082hhttp://dx.doi.org/10.1021/ja040082h
Liu M L, Xu Y H, Niu F S, Gooding J J, Liu J Q. Analyst, 2016, 141(9): 2657‒2664. doi:10.1039/c5an02231bhttp://dx.doi.org/10.1039/c5an02231b
Rong M C, Zhang K X, Wang Y R, Chen X. Chin Chem Lett, 2017, 28(5): 1119‒1124. doi:10.1016/j.cclet.2016.12.009http://dx.doi.org/10.1016/j.cclet.2016.12.009
Liang Y, Xu L X, Tang K, Guan Y T, Wang T, Wang H, Yu W W. Dyes Pigm, 2020, 178: 108358. doi:10.1016/j.dyepig.2020.108358http://dx.doi.org/10.1016/j.dyepig.2020.108358
Zhang H Q, Wang H, Wang Y, Xin B F. Appl Surf Sci, 2020, 512: 145751. doi:10.1016/j.apsusc.2020.145751http://dx.doi.org/10.1016/j.apsusc.2020.145751
Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. Carbon, 2013, 60: 421‒428. doi:10.1016/j.carbon.2013.04.055http://dx.doi.org/10.1016/j.carbon.2013.04.055
Qiang R B, Yang S R, Hou K M, Wang J Q. New J Chem, 2019, 43(27): 10826‒10833. doi:10.1039/c9nj02291khttp://dx.doi.org/10.1039/c9nj02291k
Gong X J, Lu W J, Paau M C, Hu Q, Wu X, Shuang S M, Dong C, Choi M M F. Anal Chim Acta, 2015, 861: 74‒84. doi:10.1016/j.aca.2014.12.045http://dx.doi.org/10.1016/j.aca.2014.12.045
Liao J, Cheng Z H, Zhou L. ACS Sustain Chem Eng, 2016, 4(6): 3053‒3061. doi:10.1021/acssuschemeng.6b00018http://dx.doi.org/10.1021/acssuschemeng.6b00018
Konwar A, Gogoi N, Majumdar G, Chowdhury D. Carbohydr Polym, 2015, 115: 238‒245. doi:10.1016/j.carbpol.2014.08.021http://dx.doi.org/10.1016/j.carbpol.2014.08.021
Abazar F, Noorbakhsh A. Sensor Actuat B Chem, 2020, 304: 127281. doi:10.1016/j.snb.2019.127281http://dx.doi.org/10.1016/j.snb.2019.127281
Zou W S, Ma X F, Zheng P W. Cellulose, 2020, 27(4): 2099‒2113. doi:10.1007/s10570-019-02926-8http://dx.doi.org/10.1007/s10570-019-02926-8
Pawar S N, Edgar K J. Biomaterials, 2012, 33(11): 3279‒3305. doi:10.1016/j.biomaterials.2012.01.007http://dx.doi.org/10.1016/j.biomaterials.2012.01.007
Qin Yibo(秦怡博), Yang Pengxiang(杨鹏翔), Shi Shengbin(时圣彬), Sun Hongfan(孙洪范), Zhang Chuangnian张闯年, Kong Deling(孔德领). Acta Polymerica Sinica(高分子学报), 2018, (7): 909‒916. doi:10.11777/j.issn1000-3004.2018.18039http://dx.doi.org/10.11777/j.issn1000-3004.2018.18039
Lu Lu(鲁路), Liu Xinxing(刘新星), Tong Zhen(童真). Acta Polymerica Sinica(高分子学报), 2010, (12): 1351‒1358. doi:10.3724/sp.j.1105.2010.10221http://dx.doi.org/10.3724/sp.j.1105.2010.10221
Guo Z W, Li Q, Li Z Y, Liu C, Liu X R, Liu Y Y, Dong G L, Lan T, Wei Y. J Colloid Interface Sci, 2020, 562: 224‒234. doi:10.1016/j.jcis.2019.12.030http://dx.doi.org/10.1016/j.jcis.2019.12.030
Konwar A, Chowdhury D. RSC Adv, 2015, 5(77): 62864‒62870. doi:10.1039/c5ra09887dhttp://dx.doi.org/10.1039/c5ra09887d
Liu Y, Kim E, Ghodssi R, Rubloff G W, Culver J N, Bentley W E, Payne G F. Biofabrication, 2010, 2(2): 022002. doi:10.1088/1758-5082/2/2/022002http://dx.doi.org/10.1088/1758-5082/2/2/022002
Thinakaran S, Loordhuswamy A, Rengaswami G V. Int J Biol Macromol, 2020, 148: 68‒78. doi:10.1016/j.ijbiomac.2020.01.086http://dx.doi.org/10.1016/j.ijbiomac.2020.01.086
Wu S P, Dai X Z, Cheng T T, Li S J. Carbohydr Polym, 2018, 195: 199‒206. doi:10.1016/j.carbpol.2018.04.077http://dx.doi.org/10.1016/j.carbpol.2018.04.077
Sharma A, Pandey C M, Sumana G, Soni U, Sapra S, Srivastava A K, Chatterjee T, Malhotra D. Biosens Bioelectron, 2012, 38(1): 107‒113. doi:10.1016/j.bios.2012.05.010http://dx.doi.org/10.1016/j.bios.2012.05.010
Márquez A, Jiménez-Jorquera C, Domínguez C, Muñoz-Berbel X. Biosens Bioelectron, 2017, 97: 136‒142. doi:10.1016/j.bios.2017.05.051http://dx.doi.org/10.1016/j.bios.2017.05.051
Dai G L, Wan W F, Zhao Y L, Wang Z X, Li W J, Shi P, Shen Y J. Biofabrication, 2016, 8(2): 025004. doi:10.1088/1758-5090/8/2/025004http://dx.doi.org/10.1088/1758-5090/8/2/025004
Geng Z H, Wang X, Guo X C, Zhang Z, Chen Y J, Wang Y F. J Mater Chem B, 2016, 4(19): 3331‒3338. doi:10.1039/c6tb00336bhttp://dx.doi.org/10.1039/c6tb00336b
Hou J, Yan J, Zhao Q, Li Y, Ding H, Ding L. Nanoscale, 2013, 5(20): 9558‒9561. doi:10.1039/c3nr03444ehttp://dx.doi.org/10.1039/c3nr03444e
Liu M L, Chen B B, Li C M, Huang C Z. Sci China Chem, 2019, 62(8): 968‒981. doi:10.1007/s11426-019-9449-yhttp://dx.doi.org/10.1007/s11426-019-9449-y
Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem Commun, 2012, 48(64): 7955‒7957. doi:10.1039/c2cc33869fhttp://dx.doi.org/10.1039/c2cc33869f
Pakkath S A R, Chetty S S, Selvarasu P, Murugan A V, Kumar Y, Periyasamy L, Santhakumar M, Sadras S R, Santhakumar K. ACS Biomater Sci Eng, 2018, 4(7): 2582‒2596. doi:10.1021/acsbiomaterials.7b00943http://dx.doi.org/10.1021/acsbiomaterials.7b00943
Issa M A, Abidin Z Z, Sobri S, Abdul-Rashid S, Mahdi M A, Ibrahim N A, Pudza M Y. Chin J Chem Eng, 2020, 28(2): 584‒592. doi:10.1016/j.cjche.2019.04.003http://dx.doi.org/10.1016/j.cjche.2019.04.003
Solovieva E V, Teterina A Y, Klein O I, Komlev V S, Alekseev A A, Panteleyev A A. Biomed Mater, 2021, 16(1): 015002. doi:10.1088/1748-605x/abb524http://dx.doi.org/10.1088/1748-605x/abb524
Sarkar N, Sahoo G, Das R, Prusty G, Swain S K. Eur J Pharm Sci, 2017, 109: 359‒371. doi:10.1016/j.ejps.2017.08.015http://dx.doi.org/10.1016/j.ejps.2017.08.015
Madrakian T, Mohammadzadeh A H, Maleki S, Afkhami A. New J Chem, 2018, 42(23): 18765‒18772. doi:10.1039/c8nj04261fhttp://dx.doi.org/10.1039/c8nj04261f
Algarra M, González-Calabuig A, Radoti ć K, Mutavdzic D, Ania C O, Lázaro-Martínez J M, Jiménez-Jiménez J, Rodríguez-Castellón E, del Valle M. Talanta, 2018, 178: 679‒685. doi:10.1016/j.talanta.2017.09.082http://dx.doi.org/10.1016/j.talanta.2017.09.082
Wu H Y, Yan Y, Huang Q S, Liang G B, Qiu F X, Ye Z L, Liu D. New J Chem, 44(29): 12723‒12728. doi:10.1039/d0nj01754jhttp://dx.doi.org/10.1039/d0nj01754j
Liu Q S, Dong Z C, Hao A J, Guo X J, Dong W. Talanta, 2021, 221: 121372. doi:10.1016/j.talanta.2020.121372http://dx.doi.org/10.1016/j.talanta.2020.121372
0
浏览量
56
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构