浏览全部资源
扫码关注微信
浙江省吸附分离材料与应用技术重点实验室 浙江大学高分子科学与工程学系 杭州 310027
E-mail: xuzk@zju.edu.cn
纸质出版日期:2021-5-3,
网络出版日期:2021-2-4,
收稿日期:2020-12-4,
修回日期:2021-1-6,
扫 描 看 全 文
俞炯弛, 马梦琪, 朱城业, 胡登峰, 计剑, 徐志康. 层状MoS2复合膜的制备及其纳滤与光热抗菌性能研究[J]. 高分子学报, 2021,52(5):505-513.
Jiong-chi Yu, Meng-qi Ma, Cheng-ye Zhu, Deng-feng Hu, Jian Ji, Zhi-kang Xu. MoS2 Membranes with Photothermal Conversion Property for Nanofiltration and Antibacterial Activity[J]. Acta Polymerica Sinica, 2021,52(5):505-513.
俞炯弛, 马梦琪, 朱城业, 胡登峰, 计剑, 徐志康. 层状MoS2复合膜的制备及其纳滤与光热抗菌性能研究[J]. 高分子学报, 2021,52(5):505-513. DOI: 10.11777/j.issn1000-3304.2020.20264.
Jiong-chi Yu, Meng-qi Ma, Cheng-ye Zhu, Deng-feng Hu, Jian Ji, Zhi-kang Xu. MoS2 Membranes with Photothermal Conversion Property for Nanofiltration and Antibacterial Activity[J]. Acta Polymerica Sinica, 2021,52(5):505-513. DOI: 10.11777/j.issn1000-3304.2020.20264.
二维纳米片构建的层状纳滤膜在工业染料和含盐废水的净化处理中显示出广泛的应用前景,但纳米片间松散的层状结构会影响过滤通道的稳定性,导致对盐类的截留效果不理想. 本文以均苯三甲酰氯(TMC)交联单宁酸(TA)官能化的二硫化钼(MoS
2
)纳米片构建薄层复合纳滤膜,以解决二维材料构建层状纳滤膜的常见问题. 所制备的纳滤膜不仅对荷负电染料(伊文思蓝,分子量960.8)有很高的截留率(
>
98.5%),也能很好地选择性分离染料-盐混合溶液(NaCl截留率
<
15%). 同时,该膜还能在严苛环境中保持优秀的稳定性. 此外,在近红外光照射下,MoS
2
纳米片显著的光热转换效应赋予薄层复合纳滤膜一定的抗菌能力,使得该膜在实际应用中具有巨大潜力.
Assembly of two-dimensional nanosheets has been demonstrated as one of the promising strategies to construct laminar membranes for efficient nanofiltration of dyed wastewater and even brackish water. However
these membranes are usually confined by poor stability and inferior salt rejection imposed by their loose laminar structure. Large majority of them also have complex preparation procedures and excessive feedstock consumption. Herein
new laminar nanofiltration membranes are designed to fundamentally overcome the conventional limitations. The membranes are prepared by leveraging trimesoyl chloride (TMC) dissolved in
n
-hexane
on the assembly of tannic acid-functionalized molybdenum disulfide (MoS
2
) nanosheets aqueous solution (TAT-MoS
2
). The interfacial polymerization reaction between TMC and TAT-MoS
2
takes place on polyacrylonitrile (PAN) substrate with its pH of 12. As-prepared laminar nanofiltration membranes display extraordinary stability in diverse harsh environments. The dense cross-linking network formed by acyl chloride group and MoS
2
nanosheets contributes to appropriate membrane pore size. Therefore
the laminar nanofiltration membranes promoted rejections against Na
2
SO
4
(≈85%) and negatively charged dyes (
>
98.5%). In the meanwhile
the membranes possess high selectivity for dyes from saline solutions
which shows huge potential in industrial production (NaCl
<
15%). Furthermore
MoS
2
nanosheets endows the laminar nanofiltration membranes with remarkable photothermal effect under near infrared light irradiation. As the membrane surface temperature rose
the bacteria
one of the membrane fouling culprits
would find it harsh to survive. As dead bacteria are more easier to be rinsed over membrane surface
the laminar nanofiltration membranes retain self-cleaning function. Antibacterial capability provides a fresh solution for designing membranes which work in bacteria-rich workspaces
holding significant potentials in practical applications.
二硫化钼薄层复合膜纳滤光热转换效应抗菌
Two-dimensional nanosheetsLaminar membraneNanofiltrationPhotothermal effectAntibacterial activity
Zhou D, Zhu L J, Fu Y Y, Zhu M H, Xue L X . Desalination , 2015 . 376 109 - 116 . DOI:10.1016/j.desal.2015.08.020http://doi.org/10.1016/j.desal.2015.08.020 .
Raaijmakers M J T, Benes N E . Prog Polym Sci , 2016 . 63 86 - 142 . DOI:10.1016/j.progpolymsci.2016.06.004http://doi.org/10.1016/j.progpolymsci.2016.06.004 .
Xu J, Wang Z, Wei X Y, Yang S B, Wang J X, Wang S C . Desalination , 2013 . 313 145 - 155 . DOI:10.1016/j.desal.2012.12.020http://doi.org/10.1016/j.desal.2012.12.020 .
Gu J E, Jun B M, Kwon Y N . Water Res , 2012 . 46 ( 16 ): 5389 - 5400 . DOI:10.1016/j.watres.2012.07.030http://doi.org/10.1016/j.watres.2012.07.030 .
Zhang R N, He M R, Gao D H, Liu Y N, Wu M Y, Jiao Z W, Su Y L, Jiang Z Y . J Membr Sci , 2018 . 566 258 - 267 . DOI:10.1016/j.memsci.2018.09.010http://doi.org/10.1016/j.memsci.2018.09.010 .
Mo Y H, Tiraferri A, Yip N Y, Adout A, Huang X, Elimelech M . Environ Sci Technol , 2012 . 46 ( 24 ): 13253 - 13261 . DOI:10.1021/es303673phttp://doi.org/10.1021/es303673p .
Hu M, Mi B X . Environ Sci Technol , 2013 . 47 ( 8 ): 3715 - 3723 . DOI:10.1021/es400571ghttp://doi.org/10.1021/es400571g .
Zheng Z K, Grünker R, Feng X L . Adv Mater , 2016 . 28 ( 31 ): 6529 - 6545 . DOI:10.1002/adma.201506237http://doi.org/10.1002/adma.201506237 .
Liu G P, Jin W Q, Xu N P . Angew Chem Int Ed , 2016 . 55 ( 43 ): 13384 - 13397 . DOI:10.1002/anie.201600438http://doi.org/10.1002/anie.201600438 .
Guo B Y, Jiang S D, Tang M J, Li K R, Sun S P, Chen P Y, Zhang S . J Phys Chem Lett , 2019 . 10 ( 16 ): 4609 - 4617 . DOI:10.1021/acs.jpclett.9b01780http://doi.org/10.1021/acs.jpclett.9b01780 .
Mi B X . Science , 2014 . 343 ( 6172 ): 740 - 742 . DOI:10.1126/science.1250247http://doi.org/10.1126/science.1250247 .
Zhang Y, Zhang S, Chung T S . Environ Sci Technol , 2015 . 49 ( 16 ): 10235 - 10242 . DOI:10.1021/acs.est.5b02086http://doi.org/10.1021/acs.est.5b02086 .
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y, Fang H P . Nature , 2017 . 550 ( 7676 ): 380 - 383 . DOI:10.1038/nature24044http://doi.org/10.1038/nature24044 .
Du Y, Zhang X, Yang J, Lv Y, Zhang C, Xu Z K . J Membr Sci , 2020 . 595 117586 DOI:10.1016/j.memsci.2019.117586http://doi.org/10.1016/j.memsci.2019.117586 .
Zhang Y, Japip S, Chung T S . Carbon , 2017 . 123 193 - 204 . DOI:10.1016/j.carbon.2017.07.054http://doi.org/10.1016/j.carbon.2017.07.054 .
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R . Science , 2014 . 343 ( 6172 ): 752 - 754 . DOI:10.1126/science.1245711http://doi.org/10.1126/science.1245711 .
Yeh C N, Raidongia K, Shao J J, Yang Q H, Huang J X . Nat Chem , 2015 . 7 ( 2 ): 166 - 170 . DOI:10.1038/nchem.2145http://doi.org/10.1038/nchem.2145 .
Cheng P, Chen Y, Yan X, Wang Y J, Lang W Z . ChemSusChem , 2019 . 12 ( 1 ): 275 - 282 . DOI:10.1002/cssc.201802235http://doi.org/10.1002/cssc.201802235 .
Xi Y H, Hu J Q, Liu Z, Xie R, Ju X J, Wang W, Chu L Y . ACS Appl Mater Interfaces , 2016 . 8 ( 24 ): 15557 - 15566 . DOI:10.1021/acsami.6b00928http://doi.org/10.1021/acsami.6b00928 .
Li W B, Wu W F, Li Z J . ACS Nano , 2018 . 12 ( 9 ): 9309 - 9317 . DOI:10.1021/acsnano.8b04187http://doi.org/10.1021/acsnano.8b04187 .
Nam Y T, Choi J, Kang K M, Kim D W, Jung H T . ACS Appl Mater Interfaces , 2016 . 8 ( 40 ): 27376 - 27382 . DOI:10.1021/acsami.6b09912http://doi.org/10.1021/acsami.6b09912 .
Liu H, Wang H, Zhang X . Adv Mater , 2015 . 27 ( 2 ): 249 - 254 . DOI:10.1002/adma.201404054http://doi.org/10.1002/adma.201404054 .
Han Y, Xu Z, Gao C . Adv Funct Mater , 2013 . 23 ( 29 ): 3693 - 3700 . DOI:10.1002/adfm.201202601http://doi.org/10.1002/adfm.201202601 .
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H . Chem Rev , 2017 . 117 ( 9 ): 6225 - 6331 . DOI:10.1021/acs.chemrev.6b00558http://doi.org/10.1021/acs.chemrev.6b00558 .
Wang Z Y, Tu Q S, Zheng S X, Urban J J, Li S F, Mi B X . Nano Lett , 2017 . 17 ( 12 ): 7289 - 7298 . DOI:10.1021/acs.nanolett.7b02804http://doi.org/10.1021/acs.nanolett.7b02804 .
Sun L W, Huang H B, Peng X S . Chem Commun , 2013 . 49 10718 - 10720 . DOI:10.1039/c3cc46136jhttp://doi.org/10.1039/c3cc46136j .
Jiang J W, Qi Z N, Park H S, Rabczuk T . Nanotechnology , 2013 . 24 ( 43 ): 435705 DOI:10.1088/0957-4484/24/43/435705http://doi.org/10.1088/0957-4484/24/43/435705 .
Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X Z, Feng L Z, Sun B Q, Liu Z . Adv Mater , 2014 . 26 ( 21 ): 3433 - 3440 . DOI:10.1002/adma.201305256http://doi.org/10.1002/adma.201305256 .
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H . Nat Chem , 2013 . 5 ( 4 ): 263 - 275 . DOI:10.1038/nchem.1589http://doi.org/10.1038/nchem.1589 .
Hirunpinyopas W, Prestat E, Worrall S D, Haigh S J, Dryfe R A W, Bissett M A . ACS Nano , 2017 . 11 ( 11 ): 11082 - 11090 . DOI:10.1021/acsnano.7b05124http://doi.org/10.1021/acsnano.7b05124 .
Zhang C, Hu D F, Xu J W, Ma M Q, Xing H B, Yao K, Ji J, Xu Z K . ACS Nano , 2018 . 12 ( 12 ): 12347 - 12356 . DOI:10.1021/acsnano.8b06321http://doi.org/10.1021/acsnano.8b06321 .
Ma M Q, Zhang C, Zhu C Y, Huang S, Yang J, Xu Z K . J Membr Sci , 2019 . 591 117316 DOI:10.1016/j.memsci.2019.117316http://doi.org/10.1016/j.memsci.2019.117316 .
Zhang X Y, Wu J R, Williams G R, Niu S W, Qian Q Q, Zhu L M . Colloid Surf B , 2019 . 173 101 - 108 . DOI:10.1016/j.colsurfb.2018.09.048http://doi.org/10.1016/j.colsurfb.2018.09.048 .
An Tan(安坦), Yu Hui(于辉), Xu Lijun(徐丽君), Xu Zhikang(徐志康), Wan Lingshu(万灵书) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 12 ): 1298 - 1304 . DOI:10.11777/j.issn1000-3304.2019.19086http://doi.org/10.11777/j.issn1000-3304.2019.19086 .
An Y P, Yang J, Yang H C, Wu M B, Xu Z K . ACS Appl Mater Interfaces , 2018 . 10 ( 11 ): 9832 - 9840 . DOI:10.1021/acsami.7b19700http://doi.org/10.1021/acsami.7b19700 .
Du Y, Zhang C, Zhong Q Z, Yang X, Wu J, Xu Z K . ChemSusChem , 2017 . 10 ( 13 ): 2788 - 2795 . DOI:10.1002/cssc.201700519http://doi.org/10.1002/cssc.201700519 .
Singh S, Khulbe K C, Matsuura T, Ramamurthy P . J Membr Sci , 1998 . 142 ( 1 ): 111 - 127 . DOI:10.1016/S0376-7388(97)00329-3http://doi.org/10.1016/S0376-7388(97)00329-3 .
Vatanpour V, Madaeni S S, Moradian R, Zinadini S, Astinchap B . J Membr Sci , 2011 . 375 ( 1-2 ): 284 - 294 . DOI:10.1016/j.memsci.2011.03.055http://doi.org/10.1016/j.memsci.2011.03.055 .
Guan G J, Zhang S Y, Liu S H, Cai Y Q, Low M, Teng C P, Phang I Y, Cheng Y, Duei K L, Srinivasan B M, Zheng Y G, Han M Y . J Am Chem Soc , 2015 . 137 ( 19 ): 6152 - 6155 . DOI:10.1021/jacs.5b02780http://doi.org/10.1021/jacs.5b02780 .
Ouyang L, Malaisamy R, Bruening M L . J Membr Sci , 2008 . 310 ( 1-2 ): 76 - 84 . DOI:10.1016/j.memsci.2007.10.031http://doi.org/10.1016/j.memsci.2007.10.031 .
Arki P; Hecker C; Tomandl G; Joseph Y . Sep Purif Technol , 2019 . 212 660 - 669 . DOI:10.1016/j.seppur.2018.11.054http://doi.org/10.1016/j.seppur.2018.11.054 .
Shi Z Q, Cai Y T, Deng J, Zhao W F, Zhao C S . ACS Appl Mater Interfaces , 2016 . 8 ( 36 ): 23523 - 23532 . DOI:10.1021/acsami.6b07397http://doi.org/10.1021/acsami.6b07397 .
Yu Qian(于谦), Chen Hong(陈红) . Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 4 ): 319 - 325 . DOI:10.11777/j.issn1000-3304.2020.20031http://doi.org/10.11777/j.issn1000-3304.2020.20031 .
0
浏览量
56
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构