浏览全部资源
扫码关注微信
吉林大学超分子结构与材料国家重点实验室 长春 130012
[ "张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等." ]
纸质出版日期:2021-11-20,
网络出版日期:2021-05-21,
收稿日期:2020-12-07,
扫 描 看 全 文
张薇,侯矍,李楠等.基于原子力显微镜的单分子力谱技术在高分子表征中的应用[J].高分子学报,2021,52(11):1523-1546.
Zhang Wei,Hou Jue,Li Nan,et al.Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(11):1523-1546.
张薇,侯矍,李楠等.基于原子力显微镜的单分子力谱技术在高分子表征中的应用[J].高分子学报,2021,52(11):1523-1546. DOI: 10.11777/j.issn1000-3304.2020.20266.
Zhang Wei,Hou Jue,Li Nan,et al.Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization[J].ACTA POLYMERICA SINICA,2021,52(11):1523-1546. DOI: 10.11777/j.issn1000-3304.2020.20266.
基于原子力显微镜(atomic force microscopy
AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (
e.g.
easy to operate and can work in liquid
air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup
the working principle
typical curves
the choice of AFM tip and substrate
immobilization of samples
manipulation of the device
empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers
the effects of primary chemical compositions
side groups
tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule
polymer-interface interactions and polymer interactions in polymer assemblies (
e.g.
polymer single crystal) were introduced. In addition
the nature of mechanochemical reactions and characterization of supramolecular polymers were realized
via
this technic. For biopolymers
the effects of base-pair number
the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge
the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA
proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally
the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore
AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions.
AFM单分子力谱合成高分子生物大分子
Atomic force microscopy-based single-molecule force spectroscopySynthetic polymersBiopolymers
Zhang W K, Zhang X. Prog Polym Sci, 2003, 28(8): 1271-1295. doi:10.1016/s0079-6700(03)00046-7http://dx.doi.org/10.1016/s0079-6700(03)00046-7
Zhang X, Liu C J, Wang Z Q. Polymer, 2008, 49(16): 3353-3361. doi:10.1016/j.polymer.2008.04.056http://dx.doi.org/10.1016/j.polymer.2008.04.056
Noy A. Curr Opin Chem Biol, 2011, 15(5): 710-718. doi:10.1016/j.cbpa.2011.07.020http://dx.doi.org/10.1016/j.cbpa.2011.07.020
Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H. Angew Chem Int Ed, 2000, 39(18): 3212-3237. doi:10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-xhttp://dx.doi.org/10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-x
Butt H J, Cappella B, Kappl M. Surf Sci Rep, 2005, 59(1-6): 1-152. doi:10.1016/j.surfrep.2005.08.003http://dx.doi.org/10.1016/j.surfrep.2005.08.003
Gunari N, Balazs A C, Walker G C. J Am Chem Soc, 2007, 129(33): 10046-10047. doi:10.1021/ja068652whttp://dx.doi.org/10.1021/ja068652w
Marszalek P E, Li H, Oberhauser A F, Fernandez J M. Proc Natl Acad Sci USA, 2002, 99(7): 4278-4283. doi:10.1073/pnas.072435699http://dx.doi.org/10.1073/pnas.072435699
Pang X X, Cui S X. Langmuir, 2013, 29(39): 12176-12182. doi:10.1021/la403132ehttp://dx.doi.org/10.1021/la403132e
Zhang W, Kou X L, Zhang W K. Chem J Chinese U, 2012, 33(5): 861-875
Xiang W T, Li Z D, Xu C Q, Li J, Zhang W K, Xu H P. Chem Asian J, 2019, 14(9): 1481-1486. doi:10.1002/asia.201900332http://dx.doi.org/10.1002/asia.201900332
Zhang H, Li X, Lin Y G, Gao F, Tang Z, Su P F, Zhang W K, Xu Y Z, Weng W G, Boulatov R. Nat Commun, 2017, 8: 1147. doi:10.1038/s41467-017-01412-8http://dx.doi.org/10.1038/s41467-017-01412-8
Raj G, Balnois E, Baley C, Grohens Y. J Scann Probe Microsc, 2009, 4(2): 1-7. doi:10.1166/jspm.2009.1010http://dx.doi.org/10.1166/jspm.2009.1010
Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X. J Am Chem Soc, 2011, 133(10): 3226-3229. doi:10.1021/ja108022hhttp://dx.doi.org/10.1021/ja108022h
Spruijt E, van den Berg S A, Cohen Stuart M A, van der Gucht J. ACS Nano, 2012, 6(6): 5297-5303. doi:10.1021/nn301097yhttp://dx.doi.org/10.1021/nn301097y
Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru A C, Koehler M, Gut P, Alsteens D,Stainier D Y R, Garcia-Pino A, Vanhollebeke B. Science, 2018, 361(6403): eaat1178. doi:10.1126/science.aat1178http://dx.doi.org/10.1126/science.aat1178
Zhang X N, Zhang Y Q, Zhang W K. Nucleic Acids Res, 2020, 48(12): 6458-6470. doi:10.1093/nar/gkaa479http://dx.doi.org/10.1093/nar/gkaa479
Lv S S, Dudek D M, Cao Y, Balamurali M M, Gosline J, Li H B. Nature, 2010, 465(7294): 69-73. doi:10.1038/nature09024http://dx.doi.org/10.1038/nature09024
Schonfelder J, Perez-Jimenez R, Munoz V. Nat Commun, 2016, 7: 11777. doi:10.1038/ncomms11777http://dx.doi.org/10.1038/ncomms11777
Liu N N, Zhang W K. ChemPhysChem, 2012, 13(9): 2238-2256. doi:10.1002/cphc.201200154http://dx.doi.org/10.1002/cphc.201200154
Zhang W, Lu X J, Zhang W K, Shen J C. Langmuir, 2011, 27(24): 15008-15015. doi:10.1021/la203752yhttp://dx.doi.org/10.1021/la203752y
Zhang W K, Machon C, Orta A, Phillips N, Roberts C J, Allen S, Soultanas P. J Mol Biol, 2008, 377(3): 706-714. doi:10.1016/j.jmb.2008.01.067http://dx.doi.org/10.1016/j.jmb.2008.01.067
Liu J Y, Feng W, Zhang W K. Nanoscale, 2020, 12(6): 4159-4166. doi:10.1039/c9nr09054ahttp://dx.doi.org/10.1039/c9nr09054a
Zlatanova J, Leuba S H. J Muscle Res Cell Motil, 2002, 23(5-6): 377-395. doi:10.1023/a:1023498120458http://dx.doi.org/10.1023/a:1023498120458
Zlatanova J, Leuba S H. J Mol Biol, 2003, 331(1): 1-19. doi:10.1016/s0022-2836(03)00691-0http://dx.doi.org/10.1016/s0022-2836(03)00691-0
Zhang Wenke(张文科). Acta Polymenca Sinica(高分子学报), 2011, (9): 913-922. doi:10.3979/j.issn.1673-825X.2011.04.007http://dx.doi.org/10.3979/j.issn.1673-825X.2011.04.007
Kim Y, Kim W, Park J W. Bull Korean Chem Soc, 2016, 37(12): 1895-1907. doi:10.1002/bkcs.11022http://dx.doi.org/10.1002/bkcs.11022
Friedsam C, Gaub H E, Netz R R. Biointerphases, 2006, 1(1): MR1-MR21. doi:10.1116/1.2171996http://dx.doi.org/10.1116/1.2171996
Liu Y, Julius Vancso G. Prog Polym Sci, 2020, 104: 101232. doi:10.1016/j.progpolymsci.2020.101232http://dx.doi.org/10.1016/j.progpolymsci.2020.101232
Zhang W K, Wang C, Zhang X. Chinese Sci Bull, 2003, 48(11): 1113-1126. doi:10.1360/02wd0409http://dx.doi.org/10.1360/02wd0409
Strunz T, Oroszlan K, Schafer R, Guntherodt H J. Proc Natl Acad Sci USA, 1999, 96(20): 11277-11282. doi:10.1073/pnas.96.20.11277http://dx.doi.org/10.1073/pnas.96.20.11277
Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y. Nat Chem, 2019, 11(4): 310-319. doi:10.1038/s41557-018-0209-2http://dx.doi.org/10.1038/s41557-018-0209-2
Lyu X J, Song Y, Feng W, Zhang W K. ACS Macro Lett, 2018, 7(6): 762-766. doi:10.1021/acsmacrolett.8b00355http://dx.doi.org/10.1021/acsmacrolett.8b00355
Edwards D T, Perkins T T. J Struct Biol, 2017, 197(1): 13-25. doi:10.1016/j.jsb.2016.01.009http://dx.doi.org/10.1016/j.jsb.2016.01.009
Rico F, Gonzalez L, Casuso I, Puig-Vidal M, Scheuring S. Science, 2013, 342(6159): 741-753. doi:10.1126/science.1239764http://dx.doi.org/10.1126/science.1239764
Faulk J K, Edwards D T, Bull M S, Perkins T T. Methods Enzymol, 2017, 582: 321-351. doi:10.1016/bs.mie.2016.08.007http://dx.doi.org/10.1016/bs.mie.2016.08.007
Yu H, Siewny M G W, Edwards D T, Sanders A W, Perkins T T. Science, 2017, 355(6328): 945-950. doi:10.1126/science.aah7124http://dx.doi.org/10.1126/science.aah7124
Li H B, Rief M, Oesterhelt F, Gaub H E. Adv Mater, 1998, 10(4): 316-319. doi:10.1002/(sici)1521-4095(199803)10:4<316::aid-adma316>3.0.co;2-ahttp://dx.doi.org/10.1002/(sici)1521-4095(199803)10:4<316::aid-adma316>3.0.co;2-a
Marszalek P E, Oberhauser A F, Pang Y P, Fernandez J M. Nature, 1998, 396(6712): 661-664. doi:10.1038/25322http://dx.doi.org/10.1038/25322
Rief M, Oesterhelt F, Heymann B, Gaub H E. Science, 1997, 275(5304): 1295. doi:10.1126/science.275.5304.1295http://dx.doi.org/10.1126/science.275.5304.1295
Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E. Science, 1999, 283(5408): 1727. doi:10.1126/science.283.5408.1727http://dx.doi.org/10.1126/science.283.5408.1727
Li H B, Rief M, Oesterhelt F, Gaub H E, Zhang X, Shen J C. Chem Phys Lett, 1999, 305(3-4): 197-201. doi:10.1016/s0009-2614(99)00389-9http://dx.doi.org/10.1016/s0009-2614(99)00389-9
Zhang B, Shi R, Duan W, Luo Z, Lu Z Y, Cui S. RSC Adv, 2017, 7(54): 33883-33889. doi:10.1039/c7ra05779bhttp://dx.doi.org/10.1039/c7ra05779b
Florin E L, Moy V T, Gaub H E. Science, 1994, 264(5157): 415-417. doi:10.1126/science.8153628http://dx.doi.org/10.1126/science.8153628
Sikora A E, Smith J R, Campbell S A, Firman K. Soft Matter, 2012, 8(23): 6358-6363. doi:10.1039/c2sm07213khttp://dx.doi.org/10.1039/c2sm07213k
Hinterdorfer P, Dufrene Y F. Nat Methods, 2006, 3(5): 347-355. doi:10.1038/nmeth871http://dx.doi.org/10.1038/nmeth871
Xue Y R, Li X, Li H B, Zhang W K. Nat Commun, 2014, 5: 4348. doi:10.1038/ncomms5348http://dx.doi.org/10.1038/ncomms5348
Zhang W K. Nano-mechanical Detection of Single Molecules. Doctoral Dissertation of Jilin University, 2002
Deng Y B, Wu T, Wang M D, Shi S C, Yuan G D, Li X, Chong H C, Wu B, Zheng P. Nat Commun, 2019, 10: 2775. doi:10.1038/s41467-019-10696-xhttp://dx.doi.org/10.1038/s41467-019-10696-x
Johnson K C, Thomas W E. Biophys J, 2018, 114(9): 2032-2039. doi:10.1016/j.bpj.2018.04.002http://dx.doi.org/10.1016/j.bpj.2018.04.002
Li Z D, Song Y, Li A S, Xu W Q, Zhang W K. Nanoscale, 2018, 10(39): 18586-18596. doi:10.1039/c8nr06150ehttp://dx.doi.org/10.1039/c8nr06150e
Liu N N, Chen Y, Peng B, Lin Y, Wang Q, Su Z H, Zhang W K, Li H B, Shen J C. Biophys J, 2013, 105(12): 2790-2800. doi:10.1016/j.bpj.2013.10.005http://dx.doi.org/10.1016/j.bpj.2013.10.005
Cao Y, Li H B. Langmuir, 2011, 27(4): 1440-1447. doi:10.1021/la104130nhttp://dx.doi.org/10.1021/la104130n
Popa I, Kosuri P, Alegre-Cebollada J, Garcia-Manyes S, Fernandez J M. Nat Protoc, 2013, 8(7): 1261-1276. doi:10.1038/nprot.2013.056http://dx.doi.org/10.1038/nprot.2013.056
Oberhauser A F, Hansma P K, Carrion-Vazquez M, Fernandez J M. Proc Natl Acad Sci USA, 2001, 98(2): 468-472. doi:10.1073/pnas.98.2.468http://dx.doi.org/10.1073/pnas.98.2.468
Sulchek T, Friddle R W, Noy A. Biophys J, 2006, 90(12): 4686-4691. doi:10.1529/biophysj.105.080291http://dx.doi.org/10.1529/biophysj.105.080291
Wei H Z, van de Ven T G M. Appl Spectrosc Rev, 2008, 43(2): 111-133. doi:10.1080/05704920701831254http://dx.doi.org/10.1080/05704920701831254
Bao Y, Luo Z L, Cui S X. Chem Soc Rev, 2020, 49(9): 2799-2827. doi:10.1039/c9cs00855ahttp://dx.doi.org/10.1039/c9cs00855a
Yu Y, Zhang Y H, Jiang Z H, Zhang X, Zhang H M, Wang X H. Langmuir, 2009, 25(17): 10002-10006. doi:10.1021/la901169phttp://dx.doi.org/10.1021/la901169p
Zhang W K, Zou S, Wang C, Zhang X. J Phys Chem B, 2000, 104(44): 10258-10264. doi:10.1021/jp000459fhttp://dx.doi.org/10.1021/jp000459f
Shi W Q, Zhang Y H, Liu C J, Wang Z Q, Zhang X, Zhang Y H, Chen Y M. Polymer, 2006, 47(7): 2499-2504. doi:10.1016/j.polymer.2005.12.089http://dx.doi.org/10.1016/j.polymer.2005.12.089
Li I T, Walker G C. Acc Chem Res, 2012, 45(11): 2011-2021. doi:10.1021/ar200285hhttp://dx.doi.org/10.1021/ar200285h
Li I T, Walker G C. J Am Chem Soc, 2010, 132(18): 6530-6540. doi:10.1021/ja101155hhttp://dx.doi.org/10.1021/ja101155h
Cai W H, Xu D, Qian L, Wei J H, Xiao C, Qian L M, Lu Z Y, Cui S X. J Am Chem Soc, 2019, 141(24): 9500-9503. doi:10.1021/jacs.9b03490http://dx.doi.org/10.1021/jacs.9b03490
Di W S, Gao X, Huang W M, Sun Y, Lei H, Liu Y, Li W F, Li Y R, Wang X, Qin M, Zhu Z S, Cao Y, Wang W. Phys Rev Lett, 2019, 122(4): 047801-047806. doi:10.1103/physrevlett.122.047801http://dx.doi.org/10.1103/physrevlett.122.047801
Zhang S, Qian H J, Liu Z H, Ju H Y, Lu Z Y, Zhang H M, Chi L F, Cui S X. Angew Chem Int Ed, 2019, 58(6): 1659-1663. doi:10.1002/anie.201811152http://dx.doi.org/10.1002/anie.201811152
Delparastan P, Malollari K G, Lee H, Messersmith P B. Angew Chem Int Ed, 2019, 58(4): 1077-1082. doi:10.1002/anie.201811763http://dx.doi.org/10.1002/anie.201811763
Balzer B N, Gallei M, Hauf M V, Stallhofer M, Wiegleb L, Holleitner A, Rehahn M, Hugel T. Angew Chem Int Ed, 2013, 52(25): 6541-6544. doi:10.1002/anie.201301255http://dx.doi.org/10.1002/anie.201301255
Feng W, Wang Z G, Zhang W K. Langmuir, 2017, 33(8): 1826-1833. doi:10.1021/acs.langmuir.6b04457http://dx.doi.org/10.1021/acs.langmuir.6b04457
Song Y, Ma Z W, Yang P, Zhang X Y, Lyu X J, Jiang K, Zhang W K. Macromolecules, 2019, 52(3): 1327-1333. doi:10.1021/acs.macromol.8b02702http://dx.doi.org/10.1021/acs.macromol.8b02702
Ma Z W, Yang P, Zhang X Y, Jiang K, Song Y, Zhang W K. ACS Macro Lett, 2019, 8(9): 1194-1199. doi:10.1021/acsmacrolett.9b00607http://dx.doi.org/10.1021/acsmacrolett.9b00607
Li J, Nagamani C, Moore J S. Acc Chem Res, 2015, 48(8): 2181-2190. doi:10.1021/acs.accounts.5b00184http://dx.doi.org/10.1021/acs.accounts.5b00184
Craig S L. Nature, 2012, 487(7406): 176-177. doi:10.1038/487176ahttp://dx.doi.org/10.1038/487176a
Chen Z X, Mercer J A M, Zhu X L, Romaniuk J A H, Pfattner R, Cegelski L, Martinez T J, Burns N Z, Xia Y. Science, 2017, 357(6350): 475-479. doi:10.1126/science.aan2797http://dx.doi.org/10.1126/science.aan2797
Kean Z S, Niu Z B, Hewage G B, Rheingold A L, Craig S L. J Am Chem Soc, 2013, 135(36): 13598-13604. doi:10.1021/ja4075997http://dx.doi.org/10.1021/ja4075997
Gossweiler G R, Kouznetsova T B, Craig S L. J Am Chem Soc, 2015, 137(19): 6148-6151. doi:10.1021/jacs.5b02492http://dx.doi.org/10.1021/jacs.5b02492
Wang J P, Kouznetsova T B, Niu Z B, Ong M T, Klukovich H M, Rheingold A L, Martinez T J, Craig S L. Nat Chem, 2015, 7(4): 323-327. doi:10.1038/nchem.2185http://dx.doi.org/10.1038/nchem.2185
Davis D A, Hamilton A, Yang J L, Cremar L D, van Gough D, Potisek S L, Ong M T, Braun P V, Martinez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459(7243): 68-72. doi:10.1038/nature07970http://dx.doi.org/10.1038/nature07970
Hickenboth C R, Moore J S, White S R, Sottos N R, Baudry J, Wilson S R. Nature, 2007, 446(7134): 423-427. doi:10.1038/nature05681http://dx.doi.org/10.1038/nature05681
Wang J P, Kouznetsova T B, Craig S L. J Am Chem Soc, 2015, 137(36): 11554-11557. doi:10.1021/jacs.5b06168http://dx.doi.org/10.1021/jacs.5b06168
Robb M J, Kim T A, Halmes A J, White S R, Sottos N R, Moore J S. J Am Chem Soc, 2016, 138(38): 12328-12331. doi:10.1021/jacs.6b07610http://dx.doi.org/10.1021/jacs.6b07610
Kouznetsova T B, Wang J P, Craig S L. ChemPhysChem, 2017, 18(11): 1486-1489. doi:10.1002/cphc.201600463http://dx.doi.org/10.1002/cphc.201600463
Klukovich H M, Kean Z S, Black Ramirez A L, Lenhardt J M, Lin J X, Hu X Q, Craig S L. J Am Chem Soc, 2012, 134(23): 9577-9580. doi:10.1021/ja302996nhttp://dx.doi.org/10.1021/ja302996n
Klukovich H M, Kean Z S, Iacono S T, Craig S L. J Am Chem Soc, 2011, 133(44): 17882-17888. doi:10.1021/ja2074517http://dx.doi.org/10.1021/ja2074517
Kean Z S, Black Ramirez A L, Yan Y F, Craig S L. J Am Chem Soc, 2012, 134(31): 12939-12942. doi:10.1021/ja3063666http://dx.doi.org/10.1021/ja3063666
Kryger M J, Munaretto A M, Moore J S. J Am Chem Soc, 2011, 133(46): 18992-18998. doi:10.1021/ja2086728http://dx.doi.org/10.1021/ja2086728
Wang J P, Ong M T, Kouznetsova T B, Lenhardt J M, Martinez T J, Craig S L. J Org Chem, 2015, 80(23): 11773-11778. doi:10.1021/acs.joc.5b01493http://dx.doi.org/10.1021/acs.joc.5b01493
Caruso M M, Davis D A, Shen Q, Odom S A, Sottos N R, White S R, Moore J S. Chem Rev, 2009, 109(11): 5755-5798. doi:10.1021/cr9001353http://dx.doi.org/10.1021/cr9001353
Potisek S L, Davis D A, Sottos N R, White S R, Moore J S. J Am Chem Soc, 2007, 129(45): 13808-13809. doi:10.1021/ja076189xhttp://dx.doi.org/10.1021/ja076189x
Wu D, Lenhardt J M, Black A L, Akhremitchev B B, Craig S L. J Am Chem Soc, 2010, 132(45): 15936-15938. doi:10.1021/ja108429hhttp://dx.doi.org/10.1021/ja108429h
Serpe M J, Kersey F R, Whitehead J R, Wilson S M, Clark R L, Craig S L. J Phys Chem C, 2008, 112(49): 19163-19167. doi:10.1021/jp806649ahttp://dx.doi.org/10.1021/jp806649a
Lenhardt J M, Black A L, Craig S L. J Am Chem Soc, 2009, 131(31): 10818-10819. doi:10.1021/ja9036548http://dx.doi.org/10.1021/ja9036548
Potisek S L, Davis D A, Sottos N R, White S R, Moore J S. J Am Chem Soc, 2007, 129(45): 13808-13809. doi:10.1021/ja076189xhttp://dx.doi.org/10.1021/ja076189x
Cheng B, Cui S X. Top Curr Chem, 2015, 369: 97-134. doi:10.1007/128_2015_628http://dx.doi.org/10.1007/128_2015_628
Liu Y L, Wang Z Q, Zhang X. Chem Soc Rev, 2012, 41(18): 5922-5932. doi:10.1039/c2cs35084jhttp://dx.doi.org/10.1039/c2cs35084j
Zou S, Schönherr H, Vancso G J. Angew Chem Int Ed, 2005, 44(6): 956-959. doi:10.1002/anie.200460963http://dx.doi.org/10.1002/anie.200460963
Liu Y L, Yu Y, Gao J, Wang Z Q, Zhang X. Angew Chem Int Ed, 2010, 49(37): 6576-6579. doi:10.1002/anie.201002415http://dx.doi.org/10.1002/anie.201002415
Xing H, Li Z D, Wang W B, Liu P R, Liu J K, Song Y, Wu Z L, Zhang W K, Huang F H. CCS Chem, 2019, 1: 513-523. doi:10.31635/ccschem.019.20190043http://dx.doi.org/10.31635/ccschem.019.20190043
Sluysmans D, Hubert S, Bruns C J, Zhu Z X, Stoddart J F, Duwez A S. Nat Nanotechnol, 2018, 13(3): 209-213. doi:10.1038/s41565-017-0033-7http://dx.doi.org/10.1038/s41565-017-0033-7
Chung J, Kushner A M, Weisman A C, Guan Z. Nat Mater, 2014, 13(11): 1055-1062. doi:10.1038/nmat4090http://dx.doi.org/10.1038/nmat4090
Wang H J, Shen B W, Song Y, Lee M S, Zhang W K. Macromol Rapid Commun, 2020, 41(24): 2000453. doi:10.1002/marc.202000453http://dx.doi.org/10.1002/marc.202000453
Rothemund P W K. Nature, 2006, 440(7082): 297-302. doi:10.1038/nature04586http://dx.doi.org/10.1038/nature04586
Albrecht C, Blank K, Lalic-Mülthaler M, Hirler S, Mai T, Gilbert I, Schiffmann S, Bayer T, Clausen-Schaumann H, Gaub H E. Science, 2003, 301(5631): 367-370. doi:10.1126/science.1084713http://dx.doi.org/10.1126/science.1084713
Kufer S K, Puchner E M, Gumpp H, Liedl T, Gaub H E. Science, 2008, 319(5863): 594-596. doi:10.1126/science.1151424http://dx.doi.org/10.1126/science.1151424
Rief M, Clausen-Schaumann H, Gaub H E. Nat Struct Biol, 1999, 6(4): 346-349. doi:10.1038/7582http://dx.doi.org/10.1038/7582
Liu N N, Bu T J, Song Y, Zhang W, Li J J, Zhang W K, Shen J C, Li H B. Langmuir, 2010, 26(12): 9491-9496. doi:10.1021/la100037zhttp://dx.doi.org/10.1021/la100037z
Marszalek P E, Pang Y P, Li H B, Yazal J E, Oberhauser A F, Fernandez J M. Proc Natl Acad Sci USA, 1999, 96(14): 7894-7898. doi:10.1073/pnas.96.14.7894http://dx.doi.org/10.1073/pnas.96.14.7894
Conti M, Falini G, Samorì B. Angew Chem Int Ed, 2000, 39(1): 215-218. doi:10.1002/(sici)1521-3773(20000103)39:1<215::aid-anie215>3.0.co;2-rhttp://dx.doi.org/10.1002/(sici)1521-3773(20000103)39:1<215::aid-anie215>3.0.co;2-r
Zhang Q M, Lu Z Y, Hu H, Yang W T, Marszalek P E. J Am Chem Soc, 2006, 128(29): 9387-9393. doi:10.1021/ja057693+http://dx.doi.org/10.1021/ja057693+
Marszalek P E, Dufrene Y F. Chem Soc Rev, 2012, 41(9): 3523-3534. doi:10.1039/c2cs15329ghttp://dx.doi.org/10.1039/c2cs15329g
Fisher T E, Oberhauser A F, Carrion-Vazquez M, Marszalek P E, Fernandez J M. Trends Biochem Sci, 1999, 24(10): 379-384. doi:10.1016/s0968-0004(99)01453-xhttp://dx.doi.org/10.1016/s0968-0004(99)01453-x
Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E. Science, 1997, 276(5315): 1109-1112. doi:10.1126/science.276.5315.1109http://dx.doi.org/10.1126/science.276.5315.1109
Oberhauser A F, Marszalek P E, Carrion-Vazquez M, Fernandez J M. Nat Struct Biol, 1999, 6(11): 1025-1028. doi:10.1038/14907http://dx.doi.org/10.1038/14907
Del Rio A, Perez-Jimenez R, Liu R C, Roca-Cusachs P, Fernandez J M, Sheetz M P. Science, 2009, 323(5914): 638-641. doi:10.1126/science.1162912http://dx.doi.org/10.1126/science.1162912
Cao Y, Balamurali M M, Sharma D, Li H. Proc Natl Acad Sci USA, 2007, 104(40): 15677-15681. doi:10.1073/pnas.0705367104http://dx.doi.org/10.1073/pnas.0705367104
Liu N N, Peng B, Lin Y, Su Z H, Niu Z W, Wang Q, Zhang W K, Li H B, Shen J C. J Am Chem Soc, 2010, 132(32): 11036-11038. doi:10.1021/ja1052544http://dx.doi.org/10.1021/ja1052544
Wang H J, Chen Y, Zhang W K. Nanoscale, 2019, 11(35): 16368-16376. doi:10.1039/c9nr05410chttp://dx.doi.org/10.1039/c9nr05410c
Yang P, Song Y, Feng W, Zhang W K. Macromolecules, 2018, 51(18): 7052-7060. doi:10.1021/acs.macromol.8b01544http://dx.doi.org/10.1021/acs.macromol.8b01544
Deckert-Gaudig T, Taguchi A, Kawata S, Deckert V. Chem Soc Rev, 2017, 46(13): 4077-4110. doi:10.1039/c7cs00209bhttp://dx.doi.org/10.1039/c7cs00209b
Dazzi A, Prater C B. Chem Rev, 2017, 117(7): 5146-5173. doi:10.1021/acs.chemrev.6b00448http://dx.doi.org/10.1021/acs.chemrev.6b00448
0
浏览量
503
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构