浏览全部资源
扫码关注微信
江南大学化学与材料工程学院 无锡 214122
E-mail: wfdong@jiangnan.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-05-26,
收稿日期:2020-12-12,
修回日期:2021-01-07,
扫 描 看 全 文
吴正贵,董新一,东为富.环氧化淀粉基核壳纳米粒子增韧聚乳酸的研究[J].高分子学报,2021,52(07):734-740.
Zheng-gui Wu, Xin-yi Dong, Wei-fu Dong. Toughening of Poly(lactic acid) by Epoxy Functionalized Core-Shell Starch-based Nanoparticles[J]. ACTA POLYMERICA SINICA, 2021,52(7):734-740.
吴正贵,董新一,东为富.环氧化淀粉基核壳纳米粒子增韧聚乳酸的研究[J].高分子学报,2021,52(07):734-740. DOI: 10.11777/j.issn1000-3304.2020.20274.
Zheng-gui Wu, Xin-yi Dong, Wei-fu Dong. Toughening of Poly(lactic acid) by Epoxy Functionalized Core-Shell Starch-based Nanoparticles[J]. ACTA POLYMERICA SINICA, 2021,52(7):734-740. DOI: 10.11777/j.issn1000-3304.2020.20274.
通过酰氯接枝反应在淀粉大分子链上引入长烷基链和碳碳双键,使淀粉具有自乳化性能并增加反应位点,采用无皂乳液聚合将丙烯酸乙酯(EA)与酯化改性淀粉接枝共聚制备以淀粉为核的核壳粒子,即核壳粒子为硬核软壳的结构,通过添加甲基丙烯酸缩水甘油醚(GMA)进一步制备环氧化核壳粒子. 将环氧化核壳粒子与聚乳酸(PLA)进行熔融共混改性,研究不同环氧化程度的核壳粒子对PLA性能的影响. 结果表明,环氧化淀粉核壳粒子粒径约250 nm,与PLA共混改性后,环氧化核壳粒子能够明显提高PLA的韧性,而且其拉伸强度维持在较高水平,共混物缺口冲击强度提高至纯PLA的17倍. 进一步研究表明环氧官能团的引入提高了核壳粒子与PLA的相容性同时增加了界面相互作用.
The long alkyl chain and carbon-carbon double bonds were introduced on the surface of starch through the reaction of starch and acid chloride
which endowed the starch with excellent emulsification properties and reaction sites. Then the core-shell starch-based nanoparticles
where the starch worked as the rigid core while poly(ethyl acrylate) (PEA) served as the soft shell
were prepared by soap-free emulsion copolymerization of ethyl acrylate (EA) to form PEA shell covering the starch. After that
glycidyl methacrylate (GMA) was added into the core-shell nanoparticles emulsion to prepare epoxy functionalized core-shell nanoparticles. Finally
the obtained epoxy functionalized core-shell nanoparticles were melt-blended with poly(lactic acid) (PLA) and PLA-based nanocomposites were prepared. Effects of epoxy functionalized core-shell nanoparticles on the mechanical properties of PLA were studied. FTIR spectra and TEM test revealed that the epoxy functionalized core-shell nanoparticles with an average particle size of around 250 nm were successfully prepared. Mechanical property test showed that the prepared epoxy functionalized core-shell nanoparticles dramatically improved the toughness of PLA and maintained its high tensile strength. Specifically
the notched impact strength of the blends was as high as 17 times that of neat PLA. In addition
the SEM and DMA tests indicated that the introduction of epoxy functional groups of core-shell nanoparticles significantly improved the compatibility of core-shell nanoparticles with PLA matrix.
酯化淀粉核壳粒子环氧化聚乳酸增韧
Esterified starchCore-shell particlesEpoxy functionalizedPoly(lactic acid)Toughening
Gross R A, Kalra B. Science, 2002, 297(5582): 803-807. doi:10.1126/science.297.5582.803http://dx.doi.org/10.1126/science.297.5582.803
Chen Xuesi (陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19015http://dx.doi.org/10.11777/j.issn1000-3304.2019.19015
Liang Xiaolin(梁孝林), Wen Jie(闻杰), Yang Wendi(杨雯迪), Liu Wenyi(刘文毅), Shi Dongjian(施冬健), Chen Mingqing(陈明清). Acta Polymerica Sinica(高分子学报),2019, 50(2): 147-159. doi:10.11777/j.issn1000-3304.2018.18176http://dx.doi.org/10.11777/j.issn1000-3304.2018.18176
Zhang W X, Wang Y Z. Chinese J Polym Sci, 2008, 26(4): 425-432
Lim L T, Auras R, Rubino M. Prog Polym Sci, 2008, 33(8): 820-852. doi:10.1016/j.progpolymsci.2008.05.004http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004
Nazrin A, Sapuan S M, Zuhri M Y M, Ilyas R A, Syafiq R, Sherwani S F K. Front Chem, 2020, 8: 213. doi:10.3389/fchem.2020.00213http://dx.doi.org/10.3389/fchem.2020.00213
Puchalski M, Siwek P, Panayotov N, Berova M, Kowalska S, Krucińska I. Polymers, 2019, 11(3): 559. doi:10.3390/polym11030559http://dx.doi.org/10.3390/polym11030559
Saini P, Arora M, Kumar M N V R. Adv Drug Deliv Rev, 2016, 107: 47-59. doi:10.1016/j.addr.2016.06.014http://dx.doi.org/10.1016/j.addr.2016.06.014
Hamad K, Kaseem M, Yang H W, Deri F, Ko Y G. eXPRESS Polym Lett, 2015, 9(5): 435-455. doi:10.3144/expresspolymlett.2015.42http://dx.doi.org/10.3144/expresspolymlett.2015.42
Zhu Jian(朱建), Chen Hui(陈慧), Lu Kai(卢凯), Liu Hongsheng(刘宏生), Yu Long(余龙). Acta Polymerica Sinica(高分子学报), 2020, 51(9): 983-995. doi:10.11777/j.issn1000-3304.2020.20089http://dx.doi.org/10.11777/j.issn1000-3304.2020.20089
Teixeira E D M, Curvelo A A S, Corrêa A C, Corrêa A C, Marconcini J M, Glenn G M, Mattoso L H C. Ind Crops Prod, 2012, 37(1): 61-68. doi:10.1016/j.indcrop.2011.11.036http://dx.doi.org/10.1016/j.indcrop.2011.11.036
Mittal V A, Akhtar T A, Matsko N B. Macromol Mater Eng, 2015, 300(4): 423-435. doi:10.1002/mame.201400332http://dx.doi.org/10.1002/mame.201400332
Ferri J M, Garcia-Garcia D, Sanchez-Nacher L. Carbohyd Polym, 2016, 147: 60-68. doi:10.1016/j.carbpol.2016.03.082http://dx.doi.org/10.1016/j.carbpol.2016.03.082
Sun Jinhao(孙晋皓), Feng Xin(冯欣), Li Peng(李鹏), Zhu Jin(朱锦), Tang Zhaobin(汤兆宾). Acta Polymerica Sinica(高分子学报), 2016, (7): 946-954. doi:10.11777/j.issn1000-3304.2016.15347http://dx.doi.org/10.11777/j.issn1000-3304.2016.15347
Li F S, Gao Y B, Zhang Y, Jiang W. Polymer, 2020, 191: 122237. doi:10.1016/j.polymer.2020.122237http://dx.doi.org/10.1016/j.polymer.2020.122237
Chen Y, Pan M W, Li Y, Xu J Z, Zhong G J, Ji X, Yan Z, Li Z M. Compos Sci Technol, 2018, 164: 168-177. doi:10.1016/j.compscitech.2018.04.037http://dx.doi.org/10.1016/j.compscitech.2018.04.037
Lee J Y, Kwon S H, Chin I J, Choi H J. Polym Bull, 2019, 76(11): 5483-5497. doi:10.1007/s00289-018-2662-xhttp://dx.doi.org/10.1007/s00289-018-2662-x
Pan Mingwang(潘明旺), Zhang Liucheng(张留成), Yuan Jinfeng(袁金凤), Wang Xiaomei(王小梅). Acta Polymerica Sinica(高分子学报), 2005, (1): 47-52. doi:10.3321/j.issn:1000-3304.2005.01.010http://dx.doi.org/10.3321/j.issn:1000-3304.2005.01.010
Wu N, Zhang H, Fu G. ACS Sustain Chem Eng, 2017, 5(1):78-84. doi:10.1021/acssuschemeng.6b02197http://dx.doi.org/10.1021/acssuschemeng.6b02197
Wang Y, Hu Q E, Li T, Ma P M, Zhang S W, Du M L, Chen M Q, Zhang H J, Dong W F. Ind Eng Chem Res, 2018, 57(39): 13048-13054. doi:10.1021/acs.iecr.8b02695http://dx.doi.org/10.1021/acs.iecr.8b02695
Dong X Y, Wu Z G, Wang Y, Li T, Zhang X H, Yuan H, Xia B H, Ma P M, Chen M Q, Dong W F. Polym Test, 2020, 93: 106926
Dong X Y, Liu L, Wang Y, Li T, Wu Z G, Yuan H, Ma P M, Shi D J, Chen M Q, Dong W F. Carbohyd Polym, 2021, 254: 117321. doi:10.1016/j.carbpol.2020.117321http://dx.doi.org/10.1016/j.carbpol.2020.117321
Liu L, Wang Y, Hu Q E, Li T, Ma P M, Zhang H J, Du M L, Chen M Q, Dong W F. ACS Sustain Chem Eng, 2019, 7(15): 13081-13088. doi:10.1021/acssuschemeng.9b02256http://dx.doi.org/10.1021/acssuschemeng.9b02256
0
浏览量
136
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构