浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: zbjian@ciac.ac.cn Zhong-bao Jian, E-mail: zbjian@ciac.ac.cn
纸质出版日期:2021-5-3,
网络出版日期:2021-2-3,
收稿日期:2020-12-23,
修回日期:2021-1-5,
扫 描 看 全 文
崔磊, 胡小强, 张燚鑫, 简忠保. 氟效应在酮亚胺镍催化乙烯聚合与共聚中的系统研究[J]. 高分子学报, 2021,52(5):531-540.
Lei Cui, Xiao-qiang Hu, Yi-xin Zhang, Zhong-bao Jian. Systematic Study of Fluorine Effect on
崔磊, 胡小强, 张燚鑫, 简忠保. 氟效应在酮亚胺镍催化乙烯聚合与共聚中的系统研究[J]. 高分子学报, 2021,52(5):531-540. DOI: 10.11777/j.issn1000-3304.2020.20282.
Lei Cui, Xiao-qiang Hu, Yi-xin Zhang, Zhong-bao Jian. Systematic Study of Fluorine Effect on
相比于烯烃聚合过渡金属催化剂的空间位阻与电子效应,氟效应是一种简单且有效调控烯烃聚合反应的重要方法,但研究却相对较少. 在本工作中,通过把不同位置(邻、间、对)和不同数目(0、1、2、3、5)的氟原子引入到N
O配位型的单组分阳离子酮亚胺镍催化剂中,系统地考察了氟效应对乙烯聚合反应的催化活性、催化剂热稳定性、聚合物分子量以及聚合物支化度的全面影响. 发现邻位氟取代基有利于聚合物分子量的显著提高,而间位与对位氟取代基导致聚合活性下降;特别是全氟取代基不仅造成催化剂热稳定性的下降,同时导致聚合活性与聚合物分子量的大幅下降. 在乙烯与丙烯酸甲酯的共聚合研究中,无氟取代的镍催化剂出现失活,但邻氟取代的镍催化剂则表现出聚合活性以及赋予共单体插入率,这些行为在长链极性单体共聚中表现更加优异. 本工作有助于理解氟效应在烯烃聚合中的重要作用.
Compared with steric bulk and electronic effect in transition metal catalysts for olefin coordination-insertion polymerization
fluorine effect is one facile and effective method for modulating olefin polymerization reaction. However
study on fluorine effect in late transition metal catalysts is relatively less. In this contribution
by installation of fluorine atoms with different sites and numbers into N
O-type single-component cationic
α
-ketiminato nickel catalysts
fluorine effect on ethylene polymerization properties was comprehensively investigated
including catalytic activity
thermal stability of catalyst
polymer molecular weight
and branching density. These new nickel catalysts were fully identified by
1
H-NMR and
13
C-NMR spectroscopy
elemental analysis
and X-ray diffraction analysis. It was fully found that the
ortho
-fluorinated substituent in the nickel catalyst obviously favoured the enhancement of polymer molecular weight (weight-average molecular weight (
M
w
): up to 26.2×10
4
g·mol
−1
)
but the
meta
- and
para
-fluorinated substituents in the nickel catalysts reduced the catalytic activity; especially the perfluorinated substituent in the nickel catalyst not only decreased the thermal stability of catalyst
but also led to the drop of activity and molecular weight. It was completely different from the previously reported effect of fluorine on these catalytic systems such as fluorinated phenoxy-imine nickel and titanium catalysts. Notably
the non-fluorinated nickel catalyst was inactive for the copolymerization of ethylene and methyl acrylate (MA)
but the
ortho
-fluorinated nickel catalyst showed activity and enabled the incorporation of comonomer (0.9 mol%)
albeit with low activity. However
the
ortho
-fluorinated nickel catalyst was also inactive for other more challenging monomers such as methyl methacrylate (MMA)
acrylic acid (AA)
vinyl acetate (VA) and
n
-butyl vinyl ether (BVE). As expected
the long chain polar monomers such as 6-chlorohex-1-ene
methyl 10-undecenoate (UA)
undecenoic acid (UCOOH) and 10-undecen-1-ol (UOH) exhibited better copolymerization behaviors using the
ortho
-fluorinated nickel catalyst. This work will help the community to understand the crucial role of fluorine effect in olefin polymerization.
氟效应烯烃聚合后过渡金属催化剂极性单体酮亚胺
Fluorine effectOlefin polymerizationLate transition metal catalystsPolar monomersImino-ketone
Baier M C, Zuideveld M A, Mecking S . Angew Chem Int Ed , 2014 . 53 ( 37 ): 9722 - 9744 . DOI:10.1002/anie.201400799http://doi.org/10.1002/anie.201400799 .
Hustad P D . Science , 2009 . 325 704 - 707 . DOI:10.1126/science.1174927http://doi.org/10.1126/science.1174927 .
Stürzel M, Mihan S, Mülhaupt R . Chem Rev , 2016 . 116 ( 3 ): 1398 - 1433 . DOI:10.1021/acs.chemrev.5b00310http://doi.org/10.1021/acs.chemrev.5b00310 .
Chen Z, Brookhart M . Acc Chem Res , 2018 . 51 ( 8 ): 1831 - 1839 . DOI:10.1021/acs.accounts.8b00225http://doi.org/10.1021/acs.accounts.8b00225 .
Keyes A, Alhan H E B, Ordonez E, Ha U, Beezer D B, Dau H, Liu Y S, Tsogtgerel E, Jones G R, Harth E . Angew Chem Int Ed , 2019 . 58 ( 36 ): 12370 - 12391 . DOI:10.1002/anie.201900650http://doi.org/10.1002/anie.201900650 .
Mu H L, Pan L, Song D P, Li Y S . Chem Rev , 2015 . 115 ( 22 ): 12091 - 12137 . DOI:10.1021/cr500370fhttp://doi.org/10.1021/cr500370f .
Tan C, Chen C L . Angew Chem Int Ed , 2019 . 58 ( 22 ): 7192 - 7200 . DOI:10.1002/anie.201814634http://doi.org/10.1002/anie.201814634 .
Zhang Y X, Wang C Q, Mecking S, Jian Z B . Angew Chem Int Ed , 2020 . 59 ( 34 ): 14296 - 14302 . DOI:10.1002/anie.202004763http://doi.org/10.1002/anie.202004763 .
Chen C L . Nat Rev Chem , 2018 . 2 6 - 14 . DOI:10.1038/s41570-018-0003-0http://doi.org/10.1038/s41570-018-0003-0 .
Jian Zhongbao(简忠保) . Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1359 - 1371 . DOI:10.11777/j.issn1000-3304.2018.18146http://doi.org/10.11777/j.issn1000-3304.2018.18146 .
Chen Min(陈敏), Chen Changle(陈昶乐) . Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1372 - 1384 . DOI:10.11777/j.issn1000-3304.2018.18155http://doi.org/10.11777/j.issn1000-3304.2018.18155 .
Keim W, Kowaldt F H, Goddard R, Krüger C . Angew Chem Int Ed , 1978 . 17 ( 6 ): 466 - 467 . DOI:10.1002/anie.197804661http://doi.org/10.1002/anie.197804661 .
Keim W . Angew Chem Int Ed , 2013 . 52 ( 48 ): 12492 - 12496 . DOI:10.1002/anie.201305308http://doi.org/10.1002/anie.201305308 .
Johnson L K, Killian C M, Brookhart M . J Am Chem Soc , 1995 . 117 ( 23 ): 6414 - 6415 . DOI:10.1021/ja00128a054http://doi.org/10.1021/ja00128a054 .
Johnson L K, Mecking S, Brookhart M . J Am Chem Soc , 1996 . 118 ( 1 ): 267 - 268 . DOI:10.1021/ja953247ihttp://doi.org/10.1021/ja953247i .
Xin B S, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F . J Am Chem Soc , 2017 . 139 ( 10 ): 3611 - 3614 . DOI:10.1021/jacs.6b13051http://doi.org/10.1021/jacs.6b13051 .
Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S . ACS Catal , 2018 . 8 ( 7 ): 5963 - 5976 . DOI:10.1021/acscatal.8b01088http://doi.org/10.1021/acscatal.8b01088 .
Zhang Y, Zhang Y X, Chi Y, Jian Z B . Dalton Trans , 2020 . 49 ( 8 ): 2636 - 2644 . DOI:10.1039/C9DT04482Ehttp://doi.org/10.1039/C9DT04482E .
Konishi Y, Tao W J, Yasuda H, Ito S, Oishi Y, Ohtaki H, Tana A, Tayano T, Nozaki K . ACS Macro Lett , 2018 . 7 ( 2 ): 213 - 217 . DOI:10.1021/acsmacrolett.7b00904http://doi.org/10.1021/acsmacrolett.7b00904 .
Chen M, Chen C L . ACS Catal , 2017 . 7 ( 2 ): 1308 - 1312 . DOI:10.1021/acscatal.6b03394http://doi.org/10.1021/acscatal.6b03394 .
Xia J, Zhang Y X, Zhang J F, Jian Z B . Organometallics , 2019 . 38 ( 5 ): 1118 - 1126 . DOI:10.1021/acs.organomet.8b00916http://doi.org/10.1021/acs.organomet.8b00916 .
Xia J, Zhang Y X, Hu X Q, Ma X, Cui L, Zhang J F, Jian Z B . Polym Chem , 2019 . 10 ( 4 ): 546 - 554 . DOI:10.1039/C8PY01568Fhttp://doi.org/10.1039/C8PY01568F .
Zhang Y X, Jian Z B . Polymer , 2020 . 194 122410 DOI:10.1016/j.polymer.2020.122410http://doi.org/10.1016/j.polymer.2020.122410 .
Zhou G L, Mu H L, Jian Z B . J. Catal. , 2020 . 383 215 - 220 . DOI:10.1016/j.jcat.2020.01.032http://doi.org/10.1016/j.jcat.2020.01.032 .
Xia J, Zhang Y X, Kou S Q, Jian Z B . J Catal , 2020 . 390 30 - 36 . DOI:10.1016/j.jcat.2020.07.017http://doi.org/10.1016/j.jcat.2020.07.017 .
Perrotin P, McCahill J S J, Wu G, Scott S L . Chem Commun , 2011 . 47 ( 24 ): 6948 - 6950 . DOI:10.1039/C1CC00095Khttp://doi.org/10.1039/C1CC00095K .
Tan C, Qasim M, Pang W M, Chen C L . Polym Chem , 2020 . 11 ( 2 ): 411 - 416 . DOI:10.1039/C9PY00904Chttp://doi.org/10.1039/C9PY00904C .
Carrow B P, Nozaki K . J Am Chem Soc , 2012 . 134 ( 21 ): 8802 - 8805 . DOI:10.1021/ja303507thttp://doi.org/10.1021/ja303507t .
Mu H L, Ye J H, Zhou G L, Li K K, Jian Z B . Chinese J Polym Sci , 2020 . 38 ( 6 ): 579 - 586 . DOI:10.1007/s10118-020-2359-0http://doi.org/10.1007/s10118-020-2359-0 .
Chen M, Chen C L . Angew Chem Int Ed , 2018 . 57 ( 12 ): 3094 - 3098 . DOI:10.1002/anie.201711753http://doi.org/10.1002/anie.201711753 .
Jung J, Yasuda H, Nozaki K . Macromolecules , 2020 . 53 ( 7 ): 2547 - 2556 . DOI:10.1021/acs.macromol.0c00183http://doi.org/10.1021/acs.macromol.0c00183 .
Cui L, Jian Z B . Polym Chem , 2020 . 11 ( 38 ): 6187 - 6193 . DOI:10.1039/D0PY01106Ahttp://doi.org/10.1039/D0PY01106A .
Liang T, Goudari S B, Chen C . Nat Commun , 2020 . 11 372 DOI:10.1038/s41467-019-14211-0http://doi.org/10.1038/s41467-019-14211-0 .
Makio H, Terao H, Iwashita A, Fujita T . Chem Rev , 2011 . 111 ( 3 ): 2363 - 2449 . DOI:10.1021/cr100294rhttp://doi.org/10.1021/cr100294r .
Mitani M, Mohri J, Yoshida Y, Saito J, Ishii S, Tsuru K, Matsui S, Furuyama R, Nakano T, Tanaka H, Kojoh S, Matsugi T, Kashiwa N, Fujita T . J Am Chem Soc , 2002 . 124 ( 13 ): 3327 - 3336 . DOI:10.1021/ja0117581http://doi.org/10.1021/ja0117581 .
Wang J C, Yao E, Chen Z T, Ma Y G . Macromolecules , 2015 . 48 ( 16 ): 5504 - 5510 . DOI:10.1021/acs.macromol.5b01090http://doi.org/10.1021/acs.macromol.5b01090 .
Xu M L, Yu F, Li P, Xu G Y, Zhang S J, Wang F Z . Inorg Chem , 2020 . 59 ( 7 ): 4475 - 4482 . DOI:10.1021/acs.inorgchem.9b03647http://doi.org/10.1021/acs.inorgchem.9b03647 .
Muhammad Q, Tan C, Chen C L . Sci Bull , 2020 . 65 ( 4 ): 300 - 307 . DOI:10.1016/j.scib.2019.11.019http://doi.org/10.1016/j.scib.2019.11.019 .
0
浏览量
55
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构