纸质出版日期:2021-6-3,
网络出版日期:2021-4-9,
收稿日期:2020-12-31,
修回日期:2021-2-4
扫 描 看 全 文
引用本文
阅读全文PDF
二维高分子是通过共价键连接的在二维平面内具有周期性排列结构的分子片,因其具备质轻、柔性、可调结构和高适应性等优点近年来受到了国内外研究学者的广泛关注. 可控制备二维高分子对于研究二维高分子的结构与性能关系、合成特定功能化改性的二维高分子具有重要的意义. 本文以本课题组的研究工作为出发点首先围绕一种天然二维高分子材料(石墨烯)的快速制备、组装、功能性复合及其电化学应用进行总结,然后针对新型合成二维高分子材料(二维共价有机框架(2D COF),硅烯和二维共价三嗪框架(2D CTF))的制备方法、有效的分子设计和电化学应用进行总结,用于理解二维高分子的构效关系,为实现二维高分子的可控制备和高效应用提供了思路.
Two-dimensional polymers (2DPs) are molecular sheets of atomic layer thickness with periodic arrangements in a two-dimensional plane connected by covalent bonds. They have drawn much attention in recent years because of their lightweight, flexibility, adjustable structure, and high adaptability. Graphene is a unique natural 2DP, with a honeycomb lattice connected by sp2 hybridized carbon atoms. Due to its excellent conjugated structure and stability, graphene has huge application potential in energy storage, environment, and biomedicine. However, there is a strong π-π stacking effect between two-dimensional graphene sheets, which leads to its poor dispersion and limits its performance in practical applications. To address the above issues, our group has developed strategies for the preparation of three-dimensional-graphene (3DG) nanocomposites with a series of electrochemically active materials for efficient electrochemical energy storage. What’s more, inspired by graphene, new kinds of 2DP materials have been developed, such as two-dimensional covalent organic framework (2D COF) and two-dimensional covalent triazine framework (2D CTF). We hope to develop facile preparation methods for high-quality 2DPs. Through the effective assembly, combination, and functional modification, large-scale applications of 2DP in the field of electrochemical energy storage and conversion can be realized. The controllable preparation of 2DPs is of great significance to the study of the relationship between the structure and performance of 2DPs. This article first focuses on rapid preparation, assembly, functional composite, and electrochemical applications of the natural two-dimensional graphene. Then, the preparation methods and effective molecular design of 2D COF, silicene, and 2D CTF are summarized. The article provides ideas for the controllable preparation and efficient application of 2DPs with an emphasis on the structure-property relationship of 2DPs.
In contrast with conventional one-dimensional polymers, two-dimensional polymers have the characteristics of periodic arrangement of atoms in the plane, light weight, flexibility, high adaptability and so on, which have demonstrated great potential in many fields.
一个世纪以前,施陶丁格首次提出了聚合物(或大分子)的概念[
石墨烯是一种独特的天然二维高分子[
近些年,新型的合成二维高分子逐渐被开发出来,例如:2D COF、硅烯、2D CTF[
Fig 1 Solvothermal synthesis of COF-5 as both a film on the graphene surface, as well as a powder precipitated in the bottom of the reaction vessel (Reprinted with permission from Ref.[
二维高分子材料虽然得到了一定程度的发展,但高质量的二维高分子纳米片的宏量制备仍是一个挑战,例如:高质量石墨烯的宏量制备方法有限[
石墨烯由于其多种迷人的物理化学性质,被广泛认为将在许多技术领域引发革命,而大规模生产高质量石墨烯是实现其在许多领域实际应用的关键步骤[
Fig 2 (a) The synthesis process of CMEGO; (b) SEM image of CMEGO powder samples; (c) TEM image and the inset SAED pattern of CMEGO samples; (d) Galvanostatic charge/discharge profiles of CMEGO in LIBs; (e) Rate capabilities and cycle performance of CMEGO in LIBs (Reprinted with permission from Ref.[
近年来的研究表明,石墨烯薄片的横向尺寸和应用之间存在密切的联系[
Fig 3 (a) Schematic illustration of the size fractionation of GO based on reversible adsorption/desorption of PNIPAM on GO. SEM images of different GO size distribution: large-area GO sheet (b) or F1, medium-area GO sheet (c) or F2 and small-area GO sheet (d) or F3 on a silicon substrate; (e) Cycling performance at 0.1 A·g–1 of resultant SIBs; (f) Cycling stabilities at 5 A·g–1 of resultant SIBs (Reprinted with permission from Ref.[
石墨烯片层之间强烈的π-π作用力促使二维石墨烯具有强烈的堆积倾向,这导致其优异的结构特性无法得到有效的利用. 将二维石墨烯组装为三维结构,可以较为理想地解决这一问题. 三维立体孔道结构赋予石墨烯更高的机械强度和电子、离子电导率的同时,还提供了更大的比表面积,因此三维石墨烯及其复合物具有广泛的应用空间.
有机电极材料具有丰度高、成本低、理论容量大、环境友好等优点而被广泛研究[
Fig 4 (a) Schematic of the preparation process of self-supported 3D AAQ@G nanocomposite with AAQ nanowires wrapped by graphene (Reproduced from Ref.[
目前商用的负极材料石墨由于具有较低的理论比容量(372 mAh·g–1),已逐渐满足不了电动汽车和人工智能等领域的使用需求[
聚苯胺由于其低成本、环境危害小、结构和形态可调等特点适用于制备超级电容器. 然而,聚苯胺的体积易于变化导致超级电容器循环稳定性较差[
作为一种新兴的有机无机复合材料,金属有机框架材料(metal organic frameworks,MOF)具有可调节的分子结构、孔尺寸和高比表面积等突出优点,被广泛应用于能源、环境领域[
Fig 5 (a) Schematic illustration of the synthetic strategy of 3DG wrapped PB aerogels (Reprinted with permission from Ref. [
金属氧化物由于具有高比容量、丰富的自然储量和环境友好等特点,被认为是锂离子电池负极材料的理想选择[
硫正极以其成本低廉、环境友好和超高的理论能量密度(2600 Wh·kg−1),被认为是下一代储能体系,得到了广泛的研究. 但是在充放电过程中,硫正极存在很多问题,如较大体积膨胀、多硫化物的穿梭效应、硫和多硫化物的低电子电导率等,因此锂硫电池的应用仍具有很大挑战[
我们的研究发现,硫与石墨烯复合一方面可以提高硫正极的电导率,抑制充放电过程中的体积变化;另一方面,在制备过程中氧化石墨烯上丰富的官能团在一定程度上可以抑制硫的生长. 纳米硫与石墨烯的复合在提高硫载量的同时又有效提高了整个电极材料的电化学性能[
石墨烯的发现是二维材料发展以来的里程碑,随着研究的不断深化,石墨烯在许多领域均展现出优异的性能和广泛的应用前景,这引发了人们对设计合成新型二维高分子的兴趣. 合成二维高分子是一类与石墨烯大分子结构相近的,通过共价键连接的具有共轭规整多孔结构的平面高分子,其原子层结构清晰,通过层状堆积形成具有巨大比表面积的共价有机框架结构[
为了解决目前的难题,我们开发了动态界面法辅助合成的方法成功制备出二维三嗪高分子片(
Fig 6 (a) Synthesis of triazine-based 2DP through nitrile cyclotrimerization reaction of DCB monomer; (b) Atomic structure of a single-layer 2DP from top view and side view suggested by DFTB calculation; (c) TEM image of triazine-based 2DP (Inset: a photograph of 2DP dispersion in DMF (~ 0.1 mg mL−1)); (d) HRTEM image of 2DP showing few-layer (three-layer) thickness; (e) Higher-magnification HRTEM image and (f) SAED pattern of the 2DP (Reprinted with permission from Ref.[
Fig 7 (a) Schematic illustration of synthesis of SAT-2DPs-1 and SAT-2DPs-2; (b) AFM image of SAT-2DPs-1, inset is the dispersions of SAT-2DPs-1 in THF; (c) TEM image of SAT-2DPs-1; (d) Higher-magnification HRTEM image of SAT-2DPs-1 matching with ABC stacking mode; (e) AFM image of SAT-2DPs-2, inset is the dispersions of SAT-2DPs-2 in THF; (f) TEM image of SAT-2DPs-2; (g) Higher-magnification HRTEM image of SAT-2DPs-2 matching with ABC stacking mode (Reprinted with permission from Ref.[
硅烯是二维硅的一种同素异形体,其与石墨烯不同的是,硅烯中的硅原子并不完全在同一平面上,而是表现出类似sp3杂化的低屈曲结构,由此可以预测硅烯中自旋轨道耦合效应更强,表现出比石墨烯更显著的量子自旋霍尔效应[
Fig 8 (a) Schematic illustration for the synthesis of silicene from CaSi2 via liquid oxidation and exfoliation; (b) AFM image of silicene sheets with a monolayer thickness of 0.6 nm; (c) TEM image of silicene sheets with the inset showing the photograph of a stable dispersion of silicene in NMP (5 μg·mL−1); (d) HRTEM image of silicene matching with AA stacking model; (e) SAED pattern of a silicene sheet (Reprinted with permission from Ref.[
单层或少层的二维平面材料被广泛认为可以充分暴露材料活性位点,促进材料性能的发挥,在能源存储、电化学催化、光催化、吸附和过滤领域具有极大的应用潜力[
由于金属钠价格低廉而且储量丰富,钠离子电池有望用于大规模和低成本的能量存储设备. 目前钠离子电池面临的一个关键挑战是由于钠离子半径较大,在电化学过程中钠离子的嵌入和脱出会导致迟滞的动力学以及电极材料的破坏. 这种具有优异表现的锂离子电池材料不再适用于钠离子电池,因此寻找合适的钠离子电池负极材料成为关键[
Fig 9 (a) AFM image of liquid-exfoliated 2DP nanosheets with 2–3 nm thickness. The inset is the photograph of 2DP dispersion in DMF (≈0.1 mg·mL−1 ); (b) TEM image of a scotch tape-exfoliated 2DP sheet; (c) HRTEM image shows that the sheet is nearly 12-layer thick and the interlayer distance is 0.35 nm; (d) Higher-magnification HRTEM image of the same 2DP sheet and its corresponding SAED pattern (inset); (e) Charge capacities of the exfoliated 2DP electrode at 0.1, 0.5, 1.0, 2.0, and 5.0 A·g−1 , respectively; (f) Cycle performance of CTF and exfoliated 2DP up to 1200 cycles at 1.0 A·g−1. (Reprinted with permission from Ref.[
在能源存储与转化领域,锂金属已被认为是能够满足高能量密度电池负极材料的极佳选择之一,因具有最低的电化学势和最高的理论比容量[
共轭羰基化合物由于其理论容量大、反应动力学快、环境友好、结构多样化、对离子半径不敏感等特点,近年来被逐渐开发为有前景的电极材料之一[
Fig 10 (a) Schematic illustration of the hydrogen bond-directed 2D polymerization reaction to produce crystalline 2DPI; (b) TEM and (c) AFM images of 2DPI. The inset of
二维高分子相比于传统高分子虽然研究时间不长,但取得了显著的进展,成为高分子学科新的增长点. 本文重点总结了本课题在石墨烯尤其是三维石墨烯及其复合物的制备和电化学应用进展. 三维石墨烯展现出的优异的电子、离子传导能力、高比表面积、多级孔结构、稳定性和力学性能是其他材料很难比拟的. 除了本文中总结的制备方法和应用,其他新颖的制备方法和组装策略还有很大的发展潜力和想象空间. 虽然三维石墨烯的研究已经不少,但其微观结构对宏观材料的影响和控制机理还需深入探讨. 另外,拓宽三维石墨烯的综合性能以适应极端环境和多功能集成的需求是推动石墨烯领域发展的关键因素.
本文还总结了新型的合成二维高分子材料的制备和功能化设计. 充分发挥合成二维高分子的孔径可调和可功能化改性的优势是未来高分子材料应用研究的重要方向. 对于新型的合成二维高分子而言,合成高质量的单层或少层的纳米片是巨大的挑战. 目前的二维高分子的合成比较依赖于热力学可逆反应,例如:硼酸酯、席夫碱等偶联反应. 克服对可逆反应的依赖,理解聚合反应和二维聚合物分子片之间堆叠的关系和作用机理,不用依赖可逆反应才能实现晶区的“自我修复”也可制备高质量的二维高分子是该领域的重要挑战. 二维高分子的开发受到了越来越多研究者的关注,我们相信更多功能化的二维高分子的开发和实际应用能够极大丰富高分子世界,改善人类的生活方式.
Staudinger H . Berichte der Deutschen Chemischen Gesellschaft (A and B Series) , 1920 . 53 ( 6 ): 1073 - 1085 . DOI:10.1002/cber.19200530627 . [百度学术]
Chen D, Feng H, Li J . Chem Rev , 2012 . 112 ( 11 ): 6027 - 6053 . DOI:10.1021/cr300115g . [百度学术]
Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S . Chem Rev , 2012 . 112 ( 11 ): 6156 - 6214 . DOI:10.1021/cr3000412 . [百度学术]
Sakamoto J, van Heijst J, Lukin O, Schlüter A D . Angew Chem Int Ed , 2009 . 48 ( 6 ): 1030 - 1069 . DOI:10.1002/anie.200801863 . [百度学术]
Boott C E, Nazemi A, Manners I . Angew Chem Int Ed , 2015 . 54 ( 47 ): 13876 - 13894 . DOI:10.1002/anie.201502009 . [百度学术]
Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C . Nat Mater , 2018 . 17 ( 11 ): 1027 - 1032 . DOI:10.1038/s41563-018-0189-z . [百度学术]
Zhuang L Z, Ge L, Liu H L, Jiang Z R, Jia Y, Li Z H, Yang D J, Hocking R K, Li M R, Zhang L Z, Wang X, Yao X D, Zhu Z H. . Angew Chem Int Ed , 2019 . 58 ( 38 ): 13565 - 13572 . DOI:10.1002/anie.201907600 . [百度学术]
Liu Y X, Wei Y N, Liu M H, Bai Y C, Wang X Y, Shang S C, Chen J Y, Liu Y Q . Angew Chem Int Ed , 2020 . 60 ( 6 ): 2887 - 2891 . DOI:10.1002/anie.202012971 . [百度学术]
Colson J W, Dichtel W R . Nat Chem , 2013 . 5 ( 6 ): 453 - 465 . DOI:10.1038/nchem.1628 . [百度学术]
Wang L, Sahabudeen H, Zhang T, Dong R . NPJ 2D Mater Appl , 2018 . 2 ( 1 ): 26 DOI:10.1038/s41699-018-0071-5 . [百度学术]
Geim A K, Novoselov K S . Nat Mater , 2007 . 6 ( 3 ): 183 - 191 . DOI:10.1038/nmat1849 . [百度学术]
An Y L, Tian Y, Zhang Y C, Wei C L, Tan L W, Zhang C H, Cui N X, Xiong S L, Feng J K, Qian Y T . ACS Nano , 2020 . 14 ( 12 ): 17574 - 17588 . DOI:10.1021/acsnano.0c08336 . [百度学术]
Gao C W, Jiang Z J, Wang P X, Jensen L R, Zhang Y F, Yue Y Z . Nano Energy , 2020 . 74 104868 DOI:10.1016/j.nanoen.2020.104868 . [百度学术]
Xu Q, Li X F, Sari H M K, Li W B, Liu W, Hao Y C, Qin J, Cao B, Xiao W, Xu Y, Wei Y, Kou L, Tian Z Y, Shao L, Zhang C, Sun X L . Nano Energy , 2020 . 77 105034 DOI:10.1016/j.nanoen.2020.105034 . [百度学术]
Xu Y, Sheng K, Li C, Shi G . ACS Nano , 2010 . 4 ( 7 ): 4324 - 4330 . DOI:10.1021/nn101187z . [百度学术]
Xu Y, Wu Q, Sun Y, Bai H, Shi G . ACS Nano , 2010 . 4 ( 12 ): 7358 - 7362 . DOI:10.1021/nn1027104 . [百度学术]
Wang M, Duan X, Xu Y, Duan X . ACS Nano , 2016 . 10 ( 8 ): 7231 - 7247 . DOI:10.1021/acsnano.6b03349 . [百度学术]
Xu Y, Shi G, Duan X . Accounts Chem Res , 2015 . 48 ( 6 ): 1666 - 1675 . DOI:10.1021/acs.accounts.5b00117 . [百度学术]
Côté A P, Benin A I, Ockwig N W, Keeffe M, Matzger A J, Yaghi O M . Science , 2005 . 310 ( 5751 ): 1166 DOI:10.1126/science.1120411 . [百度学术]
Xu H, Gao J, Jiang D . Nat Chem , 2015 . 7 ( 11 ): 905 - 912 . DOI:10.1038/nchem.2352 . [百度学术]
Wang N, Cheng G, Guo L, Tan B, Jin S . Adv Funct Mater , 2019 . 29 ( 43 ): 1904781 DOI:10.1002/adfm.201904781 . [百度学术]
Kuhn P, Antonietti M, Thomas A . Angew Chem Int Ed , 2008 . 47 ( 18 ): 3450 - 3453 . DOI:10.1002/anie.200705710 . [百度学术]
Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J . Nat Commun , 2020 . 11 ( 1 ): 178 DOI:10.1038/s41467-019-13739-5 . [百度学术]
Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A . Angew Chem Int Ed , 2016 . 55 ( 9 ): 3106 - 3111 . DOI:10.1002/anie.201511553 . [百度学术]
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R . Science , 2011 . 332 ( 6026 ): 228 DOI:10.1126/science.1202747 . [百度学术]
Qi H, Sahabudeen H, Liang B, Položij M, Addicoat M A, Gorelik T E, Hambsch M, Mundszinger M, Park S, Lotsch B V, Mannsfeld S C B, Zheng Z, Dong R, Heine T, Feng X, Kaiser U . Sci Adv , 2020 . 6 ( 33 ): eabb5976 DOI:10.1126/sciadv.abb5976 . [百度学术]
Singh R K, Kumar R, Singh D P . RSC Adv , 2016 . 6 ( 69 ): 64993 - 65011 . DOI:10.1039/C6RA07626B . [百度学术]
Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D . Chem Rev , 2020 . 120 ( 16 ): 8814 - 8933 . DOI:10.1021/acs.chemrev.9b00550 . [百度学术]
Xiao P, Xu Y . J Mater Chem A , 2018 . 6 ( 44 ): 21676 - 21695 . DOI:10.1039/C8TA02820F . [百度学术]
Liu Jingjing(刘晶晶), Xu Yuxi(徐宇曦) . Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 3 ): 219 - 232 . DOI:10.11777/j.issn1000-3304.2019.18222 . [百度学术]
Sun T, Wang C, Xu Y . Chem Res Chinese U , 2020 . 36 ( 4 ): 640 - 647 . DOI:10.1007/s40242-020-0179-y . [百度学术]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science , 2004 . 306 ( 5696 ): 666 - 669 . DOI:10.1126/science.1102896 . [百度学术]
Cote L J, Cruz-Silva R, Huang J . J Am Chem Soc , 2009 . 131 ( 31 ): 11027 - 11032 . DOI:10.1021/ja902348k . [百度学术]
Schwenke A M, Hoeppener S, Schubert U S . Adv Mater , 2015 . 27 ( 28 ): 4113 - 4141 . DOI:10.1002/adma.201500472 . [百度学术]
Zhu Y, Murali S, Stoller M D, Velamakanni A, Piner R D, Ruoff R S . Carbon , 2010 . 48 ( 7 ): 2118 - 2122 . DOI:10.1016/j.carbon.2010.02.001 . [百度学术]
Liu R, Zhang Y, Ning Z, Xu Y . Angew Chem Int Ed , 2017 . 56 ( 49 ): 15677 - 15682 . DOI:10.1002/anie.201708714 . [百度学术]
Li J, Wang X, Mei K C, Chang C H, Xia T . Nano Today , 2020 . 37 101061 DOI:10.1016/j.nantod.2020.101061 . [百度学术]
Becerril H, Mao J, Liu Z, Stoltenberg R, Bao Z, Chen Y . ACS Nano , 2008 . 2 ( 3 ): 463 - 470 . DOI:10.1021/nn700375n . [百度学术]
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z A . Nano Res , 2012 . 5 ( 3 ): 199 - 212 . DOI:10.1007/s12274-012-0200-y . [百度学术]
Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S . Nano Lett , 2009 . 9 ( 4 ): 1593 - 1597 . DOI:10.1021/nl803798y . [百度学术]
Zhu L, Liu R, Fang Z, Agboola P O, Al-Khalli N F, Shakir I, Xu Y . ACS Appl Mater Interfaces , 2019 . 11 ( 2 ): 2218 - 2224 . DOI:10.1021/acsami.8b16188 . [百度学术]
Lu Y, Chen J . Nat Rev Chem , 2020 . 4 ( 3 ): 127 - 142 . DOI:10.1038/s41570-020-0160-9 . [百度学术]
Zhang K, Guo C, Zhao Q, Niu Z, Chen J . Adv Sci , 2015 . 2 ( 5 ): 1500018 DOI:10.1002/advs.201500018 . [百度学术]
Yang G, Bu F, Huang Y, Zhang Y, Shakir I, Xu Y . ChemSusChem , 2017 . 10 ( 17 ): 3419 - 3426 . DOI:10.1002/cssc.201701175 . [百度学术]
Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Müllen K . Adv Mater , 2014 . 26 ( 26 ): 4552 - 4558 . DOI:10.1002/adma.201401228 . [百度学术]
Huang Y, Li K, Jingjing L, Zhong X, Duan X, Shakir I, Xu Y . J Mater Chem A , 2017 . 5 ( 6 ): 2710 - 2716 . DOI:10.1039/C6TA09754E . [百度学术]
Zhang Y, Huang Y, Yang G, Bu F, Li K, Shakir I, Xu Y . ACS Appl Mater Interfaces , 2017 . 9 ( 18 ): 15549 - 15556 . DOI:10.1021/acsami.7b03687 . [百度学术]
Wen L, Li F, Cheng H M . Adv Mater , 2016 . 28 ( 22 ): 4306 - 4337 . DOI:10.1002/adma.201504225 . [百度学术]
Huang Y, Li K, Yang G, Aboud M F A, Shakir I, Xu Y . Small , 2018 . 14 ( 13 ): 1703969 DOI:10.1002/smll.201703969 . [百度学术]
Kumar N A, Choi H J, Shin Y R, Chang D W, Dai L, Baek J B . ACS Nano , 2012 . 6 ( 2 ): 1715 - 1723 . DOI:10.1021/nn204688c . [百度学术]
Li K, Liu J, Huang Y, Bu F, Xu Y . J Mater Chem A , 2017 . 5 ( 11 ): 5466 - 5474 . DOI:10.1039/C6TA11224B . [百度学术]
Zhao R, Li K, Liu R, Sarfraz M, Shakir I, Xu Y . J Mater Chem A , 2017 . 5 ( 36 ): 19098 - 19106 . DOI:10.1039/C7TA05908F . [百度学术]
Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y . J Mater Chem A , 2018 . 6 ( 4 ): 1802 - 1808 . DOI:10.1039/C7TA09041B . [百度学术]
Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X . J Am Chem Soc , 2015 . 137 ( 13 ): 4288 - 4291 . DOI:10.1021/jacs.5b00046 . [百度学术]
Su D, Cortie M, Fan H, Wang G . Adv Mater , 2017 . 29 ( 48 ): 1700587 DOI:10.1002/adma.201700587 . [百度学术]
Liu Y, Li G, Fu J, Chen Z, Peng X . Angew Chem Int Ed , 2017 . 56 ( 22 ): 6176 - 6180 . DOI:10.1002/anie.201700686 . [百度学术]
Choi K M, Jeong H M, Park J H, Zhang Y B, Kang J K, Yaghi O M . ACS Nano , 2014 . 8 ( 7 ): 7451 - 7457 . DOI:10.1021/nn5027092 . [百度学术]
Bu F, Feng X, Jiang T, Shakir I, Xu Y . Chem Eur J , 2017 . 23 ( 35 ): 8358 - 8363 . DOI:10.1002/chem.201700742 . [百度学术]
Atwater H A, Polman A . Nat Mater , 2010 . 9 ( 3 ): 205 - 213 . DOI:10.1038/nmat2629 . [百度学术]
Xiao P, Bu F, Zhao R, Aly Aboud M F, Shakir I, Xu Y . ACS Nano , 2018 . 12 ( 4 ): 3947 - 3953 . DOI:10.1021/acsnano.8b01488 . [百度学术]
Xiao P, Li S, Yu C, Wang Y, Xu Y . ACS Nano , 2020 . 14 ( 8 ): 10210 - 10218 . DOI:10.1021/acsnano.0c03488 . [百度学术]
Wang X, Chen Y, Fang Y, Zhang J, Gao S, Lou X W . Angew Chem Int Ed , 2019 . 58 ( 9 ): 2675 - 2679 . DOI:10.1002/anie.201812387 . [百度学术]
Xiao Y, Hwang J Y, Belharouak I, Sun Y K . ACS Energy Lett , 2017 . 2 ( 2 ): 364 - 372 . DOI:10.1021/acsenergylett.6b00660 . [百度学术]
Yao Y, Zhu Y, Huang J, Shen J, Li C . Electrochimica Acta , 2018 . 271 242 - 251 . DOI:10.1016/j.electacta.2018.03.144 . [百度学术]
Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y . ACS Nano , 2017 . 11 ( 5 ): 5140 - 5147 . DOI:10.1021/acsnano.7b02198 . [百度学术]
Chen Z, Li S, Zhao Y, Aly Aboud M F, Shakir I, Xu Y . J Mater Chem A , 2019 . 7 ( 46 ): 26342 - 26350 . DOI:10.1039/C9TA10184E . [百度学术]
Bu F, Xiao P, Chen J, Aly Aboud M F, Shakir I, Xu Y . J Mater Chem A , 2018 . 6 ( 15 ): 6414 - 6421 . DOI:10.1039/C7TA11111H . [百度学术]
He J, Manthiram A . Adv Energy Mater , 2020 . 10 ( 41 ): 2002654 DOI:10.1002/aenm.202002654 . [百度学术]
Zhang L, Liu D, Muhammad Z, Wan F, Xie W, Wang Y, Song L, Niu Z, Chen J . Adv Mater , 2019 . 31 ( 40 ): 1903955 DOI:10.1002/adma.201903955 . [百度学术]
Lin C, Niu C, Xu X, Li K, Cai Z, Zhang Y, Wang X, Qu L, Xu Y, Mai L . Phys Chem Chem Phys , 2016 . 18 ( 32 ): 22146 - 22153 . DOI:10.1039/C6CP03624D . [百度学术]
Zhao Q, Zhu Q, Miao J, Guan Z, Liu H, Chen R, An Y, Wu F, Xu B . ACS Appl Mater Interfaces , 2018 . 10 ( 13 ): 10882 - 10889 . DOI:10.1021/acsami.8b00225 . [百度学术]
Xiao P, Bu F, Yang G, Zhang Y, Xu Y . Adv Mater , 2017 . 29 ( 40 ): 1703324 DOI:10.1002/adma.201703324 . [百度学术]
Gottschling K, Savasci G, Vignolo-González H, Schmidt S, Mauker P, Banerjee T, Rovó P, Banerjee T, Rovó, P, Ochsenfeld C, Lotsch B V . J Am Chem Soc , 2020 . 142 ( 28 ): 12146 - 12156 . DOI:10.1021/jacs.0c02155 . [百度学术]
Ma H C, Chen G J, Huang F, Dong Y B . J Am Chem Soc , 2020 . 142 ( 29 ): 12574 - 12578 . DOI:10.1021/jacs.0c04722 . [百度学术]
Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H . J Am Chem Soc , 2017 . 139 ( 25 ): 8698 - 8704 . DOI:10.1021/jacs.7b04096 . [百度学术]
Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L . Nat Chem , 2012 . 4 ( 3 ): 215 - 220 . DOI:10.1038/nchem.1242 . [百度学术]
Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P . Nat Chem , 2017 . 9 ( 6 ): 563 - 570 . DOI:10.1038/nchem.2696 . [百度学术]
Kissel P, Murray D J, Wulftange W J, Catalano V J, King B T . Nat Chem , 2014 . 6 ( 9 ): 774 - 778 . DOI:10.1038/nchem.2008 . [百度学术]
Liu K, Qi H, Dong R, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z, Feng X . Nat Chem , 2019 . 11 ( 11 ): 994 - 1000 . DOI:10.1038/s41557-019-0327-5 . [百度学术]
Zhong Y, Cheng B, Park C, Ray A, Brown S, Mujid F, Lee J U, Zhou H, Suh J, Lee K H, Mannix A J, Kang, K, Sibener S J, Muller D A, Park J . Science , 2019 . 366 ( 6471 ): 1379 DOI:10.1126/science.aax9385 . [百度学术]
Sakaushi K, Antonietti M . Accounts Chem Res , 2015 . 48 ( 6 ): 1591 - 1600 . DOI:10.1021/acs.accounts.5b00010 . [百度学术]
Zhu X, Tian C, Veith G M, Abney C W, Dehaudt J, Dai S . J Am Chem Soc , 2016 . 138 ( 36 ): 11497 - 11500 . DOI:10.1021/jacs.6b07644 . [百度学术]
Zhou T, Zhao Y, Choi J W, Coskun A . Angew Chem Int Ed , 2019 . 58 ( 47 ): 16795 - 16799 . DOI:10.1002/anie.201908513 . [百度学术]
Liu M, Guo L, Jin S, Tan B . J Mater Chem A , 2019 . 7 ( 10 ): 5153 - 5172 . DOI:10.1039/C8TA12442F . [百度学术]
Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A . Chem Mater , 2013 . 25 ( 9 ): 1542 - 1548 . DOI:10.1021/cm303751n . [百度学术]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M . Adv Mater , 2010 . 22 ( 19 ): 2202 - 2205 . DOI:10.1002/adma.200903436 . [百度学术]
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S . Angew Chem Int Ed , 2020 . 59 ( 15 ): 6007 - 6014 . DOI:10.1002/anie.201914424 . [百度学术]
Troschke E, Grätz S, Lübken T, Borchardt L . Angew Chem Int Ed , 2017 . 56 ( 24 ): 6859 - 6863 . DOI:10.1002/anie.201702303 . [百度学术]
Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y . J Am Chem Soc , 2017 . 139 ( 34 ): 11666 - 11669 . DOI:10.1021/jacs.7b05025 . [百度学术]
Zhao R, Niu C, Aly Aboud M F, Shakir I, Yu C, Xu Y . Sci China Chem , 2020 . 63 ( 7 ): 966 - 972 . DOI:10.1007/s11426-020-9720-1 . [百度学术]
Zhuang J, Xu X, Du Y, Wu K, Chen L, Hao W, Wang J, Yeoh W K, Wang X, Dou S X . Phys Rev B , 2015 . 91 ( 16 ): 161409 DOI:10.1103/PhysRevB.91.161409 . [百度学术]
Liu C C, Feng W, Yao Y . Phys Rev Lett , 2011 . 107 ( 7 ): 076802 DOI:10.1103/PhysRevLett.107.076802 . [百度学术]
Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X . Sci Adv , 2016 . 2 ( 7 ): e1600067 DOI:10.1126/sciadv.1600067 . [百度学术]
Liu J, Yang Y, Lyu P, Nachtigall P, Xu Y . Adv Mater , 2018 . 30 ( 26 ): 1800838 DOI:10.1002/adma.201800838 . [百度学术]
Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y . Adv Mater , 2019 . 31 ( 29 ): 1901640 DOI:10.1002/adma.201901640 . [百度学术]
Chen X, Zhang H, Ci C, Sun W, Wang Y . ACS Nano , 2019 . 13 ( 3 ): 3600 - 3607 . DOI:10.1021/acsnano.9b00165 . [百度学术]
Liu, J, Lyu, P, Zhang Y, Nachtigall P, Xu Y . Adv Mater , 2018 . 30 ( 11 ): 1705401 DOI:10.1002/adma.201705401 . [百度学术]
Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J . Nat Energy , 2019 . 4 ( 7 ): 551 - 559 . DOI:10.1038/s41560-019-0390-6 . [百度学术]
Niu C, Liu J, Chen G, Liu C, Qian T, Zhang J, Cao B, Shang W, Chen Y, Han J, Du J, Chen Y . J Power Sources , 2019 . 417 70 - 75 . DOI:10.1016/j.jpowsour.2019.02.004 . [百度学术]
Zhang K, Zhang B, Weng M, Zheng J, Li S, Pan F . Phys Chem Chem Phys , 2019 . 21 ( 19 ): 9883 - 9888 . DOI:10.1039/C9CP02117E . [百度学术]
Häupler B, Wild A, Schubert U S . Adv Energy Mater , 2015 . 5 ( 11 ): 1402034 DOI:10.1002/aenm.201402034 . [百度学术]
Duan H, Lyu P, Liu J, Zhao Y, Xu Y . ACS Nano , 2019 . 13 ( 2 ): 2473 - 2480 . DOI:10.1021/acsnano.8b09416 . [百度学术]
249
浏览量
770
下载量
1
CSCD
相关文章
相关作者
相关机构