浏览全部资源
扫码关注微信
1.华南师范大学化学学院 环境理论化学教育部重点实验室 广州 510006
2.吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
[ "刘鸿,男,1983年生. 华南师范大学化学学院教授. 2005年毕业于吉林大学化学学院获学士学位,2010年毕业于吉林大学理论化学研究所获博士学位. 同年留校工作至2018年,其中2015~2016年任德国达姆施塔特工业大学化学系洪堡学者,2018年底调入华南师范大学化学学院工作. 2020年获国家自然科学基金优秀青年科学基金资助. 主要从事功能聚合物材料理论设计与模拟研究工作,包括聚合反应模拟方法的发展及界面聚合机理探索,已发表学术论文80余篇" ]
纸质出版日期:2021-6-3,
网络出版日期:2021-3-12,
收稿日期:2021-1-12,
修回日期:2021-2-1,
扫 描 看 全 文
刘鸿, 朱有亮, 吕中元. 高分子界面聚合动力学模拟研究进展[J]. 高分子学报, 2021,52(6):565-577.
Hong Liu, You-liang Zhu, Zhong-yuan Lu. Kinetics of Interfacial Polymerization: Progress on Computer Simulation Studies[J]. Acta Polymerica Sinica, 2021,52(6):565-577.
刘鸿, 朱有亮, 吕中元. 高分子界面聚合动力学模拟研究进展[J]. 高分子学报, 2021,52(6):565-577. DOI: 10.11777/j.issn1000-3304.2021.21008.
Hong Liu, You-liang Zhu, Zhong-yuan Lu. Kinetics of Interfacial Polymerization: Progress on Computer Simulation Studies[J]. Acta Polymerica Sinica, 2021,52(6):565-577. DOI: 10.11777/j.issn1000-3304.2021.21008.
界面聚合是制备功能聚合物材料的重要手段,其产物的结构和性能与界面厚度及其化学特性、聚合速率、扩散速率等多种热力学和动力学因素有关. 实验受限于表征手段,对理解界面聚合的动力学机理仍有很大难度. 计算机模拟可以站在微观视角研究这一过程,是明确界面聚合产物结构与性质影响因素的有力工具. 本文以我们课题组近年来的工作为主线,对当前在界面聚合模拟研究领域所取得的系统和创新性成果进行总结和评述. 从界面聚合模拟方法的发展、固-液相界面聚合体系以及液-液相界面聚合体系3个方面进行介绍,为相关功能聚合物材料的理性设计和精准调控提供新的思路.
Interfacial polymerization is an important method for preparing functional polymer materials. At present
in both fields of solid-liquid and liquid-liquid interfacial polymerizations
there are suspending problems which need to be solved
via
computer simulation studies. In the present paper
the research advances
focusing on the simulation study of kinetics of interfacial polymerization
are summarized with an emphasis on the research results from the authors’ group. The discussions are divided into three sections. (1) Recent development of simulation method for the interfacial polymerization. The difficulty for the theoretical and simulation study on investigating this issue lies in the scale inconsistency between the polymer diffusion dynamics and the reaction kinetics of polymerization. The coarse-grained simulation method coupled with the stochastic reaction model
which is developed by the authors’ group
is proved an appropriate strategy for solving this problem and mainly introduced in the paper. (2) Controlling factors in the solid-liquid interfacial polymerization. The surface modification by polymer brushes is a typical solid-liquid interfacial polymerization. The effects of main controlling factors on the growth kinetics of the grafted chains
including the grafting surface curvature
the arrangement of reactive sites and the reacting units
are investigated in-depth
respectively. (3) New advances on the liquid-liquid interfacial polymerization. Focusing on the representative polymerization-induced self-assembly and supramolecular interfacial polymerization systems
we develop the corresponding simulation models and investigate the structures and dynamics. This paper is expected to guide the experimentalists to realize the theory-driven controllable design and preparation of polymer materials.
固-液相界面聚合液-液相界面聚合粗粒化分子量分布分散性
Solid-liquid interfacial polymerizationLiquid-liquid interfacial polymerizationCoarse-grainingMolecular weight distributionPolydispersity
Lucon J, Qazi S, Uchida M, Bedwell G, Lafrance B, Prevelige P, Douglas T . Nat Chem , 2012 . 4 781 - 788 . DOI:10.1038/nchem.1442http://doi.org/10.1038/nchem.1442 .
Cornelissen J J L M . Nat Chem , 2012 . 4 ( 10 ): 775 - 777 . DOI:10.1038/nchem.1462http://doi.org/10.1038/nchem.1462 .
Chen Y, Kushner A M, Williams G A, Guan Z . Nat Chem , 2012 . 4 ( 6 ): 467 - 472 . DOI:10.1038/nchem.1314http://doi.org/10.1038/nchem.1314 .
Jiang S, Cao Z . Adv Mater , 2010 . 22 ( 9 ): 920 - 932 . DOI:10.1002/adma.200901407http://doi.org/10.1002/adma.200901407 .
Patil R R, Turgman-Cohen S, Šrogl J, Kiserow D, Genzer J . ACS Macro Lett , 2015 . 4 ( 2 ): 251 - 254 . DOI:10.1021/mz5007188http://doi.org/10.1021/mz5007188 .
Kang C, Crockett R M, Spencer N D . Macromolecules , 2014 . 47 ( 1 ): 269 - 275 . DOI:10.1021/ma401951whttp://doi.org/10.1021/ma401951w .
Turgman-Cohen S, Genzer J . J Am Chem Soc , 2011 . 133 ( 44 ): 17567 - 17569 . DOI:10.1021/ja2081636http://doi.org/10.1021/ja2081636 .
Turgman-Cohen S, Genzer J . Macromolecules , 2012 . 45 ( 4 ): 2128 - 2137 . DOI:10.1021/ma202679rhttp://doi.org/10.1021/ma202679r .
Qian H-J, Carbone P, Chen X, Karimi-Varzaneh H A, Liew C C, Müller-Plathe F . Macromolecules , 2008 . 41 ( 24 ): 9919 - 9929 . DOI:10.1021/ma801910rhttp://doi.org/10.1021/ma801910r .
Müller-Plathe F . ChemPhysChem , 2002 . 3 ( 9 ): 754 - 769 . DOI:10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-Uhttp://doi.org/10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U .
Farah K, Karimi-Varzaneh H A, Muller-Plathe F, Bohm M C . J Phys Chem B , 2010 . 114 ( 43 ): 13656 - 13666 . DOI:10.1021/jp107001ehttp://doi.org/10.1021/jp107001e .
Farah K, Leroy F, Müller-Plathe F, Böhm M C . J Phys Chem C , 2011 . 115 ( 33 ): 16451 - 16460 . DOI:10.1021/jp203480qhttp://doi.org/10.1021/jp203480q .
Perez M, Lame O, Leonforte F, Barrat J L . J Chem Phys , 2008 . 128 ( 23 ): 234904 DOI:10.1063/1.2936839http://doi.org/10.1063/1.2936839 .
Turgman-Cohen S, Genzer J . Macromolecules , 2010 . 43 ( 22 ): 9567 - 9577 . DOI:10.1021/ma102046qhttp://doi.org/10.1021/ma102046q .
Berezkin A V, Kudryavtsev Y V . Macromolecules , 2011 . 44 ( 1 ): 112 - 121 . DOI:10.1021/ma101285mhttp://doi.org/10.1021/ma101285m .
de Buyl P, Nies E . J Chem Phys , 2015 . 142 ( 13 ): 134102 DOI:10.1063/1.4916313http://doi.org/10.1063/1.4916313 .
Liu H, Qian H J, Zhao Y, Lu Z Y . J Chem Phys , 2007 . 127 ( 14 ): 144903 DOI:10.1063/1.2790005http://doi.org/10.1063/1.2790005 .
Liu H, Li M, Lu Z Y, Zhang Z G, Sun C C, Cui T . Macromolecules , 2011 . 44 ( 21 ): 8650 - 8660 . DOI:10.1021/ma201390khttp://doi.org/10.1021/ma201390k .
Liu H, Zhu Y L, Lu Z Y, Müller-Plathe F . J Comput Chem , 2016 . 37 ( 30 ): 2634 - 2646 . DOI:10.1002/jcc.24495http://doi.org/10.1002/jcc.24495 .
Xu D, Ni C Y, Zhu Y L, Lu Z Y, Xue Y H, Liu H . J Chem Phys , 2018 . 148 ( 2 ): 024901 DOI:10.1063/1.4999050http://doi.org/10.1063/1.4999050 .
Zhang J M, Li H, Liu H, Sun C C . J Theor Comput Chem , 2011 . 10 ( 5 ): 615 - 628 . DOI:10.1142/S0219633611006670http://doi.org/10.1142/S0219633611006670 .
Liu H. China, Software Copyright, 2017SR589069. 2016-10-10
Li M, Ren H, Sun F, Tian Y, Zhu Y, Li J, Mu X, Xu J, Deng F, Zhu G . Adv Mater , 2018 . 30 ( 43 ): 1804169 DOI:10.1002/adma.201804169http://doi.org/10.1002/adma.201804169 .
Tian Y, Song J, Zhu Y, Zhao H, Muhammad F, Ma T, Chen M, Zhu G . Chem Sci , 2019 . 10 ( 2 ): 606 - 613 . DOI:10.1039/C8SC03727Bhttp://doi.org/10.1039/C8SC03727B .
Liu H, Xue Y H, Qian H J, Lu Z Y, Sun C C . J Chem Phys , 2008 . 129 ( 2 ): 024902 DOI:10.1063/1.2953694http://doi.org/10.1063/1.2953694 .
Liu H, Li M, Lu Z Y, Zhang Z G, Sun C C . Macromolecules , 2009 . 42 ( 7 ): 2863 - 2872 . DOI:10.1021/ma802817rhttp://doi.org/10.1021/ma802817r .
Liu H, Zhu Y L, Zhang J, Lu Z Y, Sun Z Y . ACS Macro Lett , 2012 . 1 ( 11 ): 1249 - 1253 . DOI:10.1021/mz3003374http://doi.org/10.1021/mz3003374 .
Xue Y H, Zhu Y L, Quan W, Qu F H, Han C, Fan J T, Liu H . Phys Chem Chem Phys , 2013 . 15 ( 37 ): 15356 - 15364 . DOI:10.1039/c3cp51960khttp://doi.org/10.1039/c3cp51960k .
Liu B, Liu D, Xue Y H, Liu H . Mol Simul , 2014 . 40 ( 4 ): 285 - 294 . DOI:10.1080/08927022.2013.803102http://doi.org/10.1080/08927022.2013.803102 .
Xue Y H, Quan W, Liu X L, Han C, Li H, Liu H . Macromolecules , 2017 . 50 ( 17 ): 6482 - 6488 . DOI:10.1021/acs.macromol.7b01753http://doi.org/10.1021/acs.macromol.7b01753 .
Xing J Y, Lu Z Y, Liu H, Xue Y H . Phys Chem Chem Phys , 2018 . 20 ( 3 ): 2066 - 2074 . DOI:10.1039/C7CP07818Hhttp://doi.org/10.1039/C7CP07818H .
Berezkin A V, Kudryavtsev Y V . J Chem Phys , 2013 . 139 ( 15 ): 154102 DOI:10.1063/1.4824768http://doi.org/10.1063/1.4824768 .
Berezkin A V, Kudryavtsev Y V . Langmuir , 2015 . 31 ( 44 ): 12279 - 12290 . DOI:10.1021/acs.langmuir.5b03031http://doi.org/10.1021/acs.langmuir.5b03031 .
Guseva D V, Kudryavtsev Y V, Berezkin A V . J Chem Phys , 2011 . 135 ( 20 ): 204904 DOI:10.1063/1.3663614http://doi.org/10.1063/1.3663614 .
Berezkin A V, Kudryavtsev Y V . Macromolecules , 2013 . 46 ( 12 ): 5080 - 5089 . DOI:10.1021/ma400700nhttp://doi.org/10.1021/ma400700n .
Krajniak J, Zhang Z, Pandiyan S, Nies E, Samaey G . J Comput Chem , 2018 . 39 ( 22 ): 1764 - 1778 . DOI:10.1002/jcc.25348http://doi.org/10.1002/jcc.25348 .
Rabbel H, Frey H, Schmid F . J Chem Phys , 2015 . 143 ( 24 ): 243125 DOI:10.1063/1.4935371http://doi.org/10.1063/1.4935371 .
Ansari M, Hatzikiriakos S G, Sukhadia A M, Rohlfing D C . Rheol Acta , 2011 . 50 ( 1 ): 17 - 27 . DOI:10.1007/s00397-010-0503-4http://doi.org/10.1007/s00397-010-0503-4 .
Nadgorny M, Gentekos D T, Xiao Z, Singleton S P, Fors B P, Connal L A . Macromol Rapid Commun , 2017 . 38 ( 19 ): 1700352 DOI:10.1002/marc.201700352http://doi.org/10.1002/marc.201700352 .
Gentekos D T, Fors B P . ACS Macro Lett , 2018 . 677 - 682.
Li L, Han C, Xu D, Xing J Y, Xue Y H, Liu H . Phys Chem Chem Phys , 2018 . 20 ( 27 ): 18400 - 18409 . DOI:10.1039/C8CP02905Ahttp://doi.org/10.1039/C8CP02905A .
Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Siclovan T M, Kickelbick G, Vallant T, Hoffmann H, Pakula T . Macromolecules , 1999 . 32 ( 26 ): 8716 - 8724 . DOI:10.1021/ma991146phttp://doi.org/10.1021/ma991146p .
Milchev A, Wittmer J P, Landau D P . J Chem Phys , 2000 . 112 ( 3 ): 1606 - 1615 . DOI:10.1063/1.480600http://doi.org/10.1063/1.480600 .
Yang W, Wang C . J Mater Chem C , 2016 . 4 ( 30 ): 7193 - 7207 . DOI:10.1039/C6TC01625Ahttp://doi.org/10.1039/C6TC01625A .
Zhang M, Li Y, Su Z, Wei G . Polym Chem , 2015 . 6 ( 34 ): 6107 - 6124 . DOI:10.1039/C5PY00777Ahttp://doi.org/10.1039/C5PY00777A .
Li C, Shi G . Electrochim Acta , 2011 . 56 ( 28 ): 10737 - 10743 . DOI:10.1016/j.electacta.2010.12.081http://doi.org/10.1016/j.electacta.2010.12.081 .
Sun X, Sun H, Li H, Peng H . Adv Mater , 2013 . 25 ( 37 ): 5153 - 5176 . DOI:10.1002/adma.201301926http://doi.org/10.1002/adma.201301926 .
Lei W, Si W, Xu Y, Gu Z, Hao Q . Microchim Acta , 2014 . 181 ( 7 ): 707 - 722.
Pyun J, Matyjaszewski K . Chem Mater , 2001 . 13 ( 10 ): 3436 - 3448 . DOI:10.1021/cm011065jhttp://doi.org/10.1021/cm011065j .
Patel H A, Somani R S, Bajaj H C, Jasra R V . Bull Mat Sci , 2006 . 29 ( 2 ): 133 - 145 . DOI:10.1007/BF02704606http://doi.org/10.1007/BF02704606 .
Li Qingxiao(李青霄), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会) . Acta Polymerica Sinica(高分子学报) , 2018 . ( 10 ): 1351 - 1358 . DOI:10.11777/j.issn1000-3304.2018.18072http://doi.org/10.11777/j.issn1000-3304.2018.18072 .
Kumar S K, Jouault N, Benicewicz B, Neely T . Macromolecules , 2013 . 46 ( 9 ): 3199 - 3214 . DOI:10.1021/ma4001385http://doi.org/10.1021/ma4001385 .
Kumar S K, Benicewicz B C, Vaia R A, Winey K I . Macromolecules , 2017 . 50 ( 3 ): 714 - 731 . DOI:10.1021/acs.macromol.6b02330http://doi.org/10.1021/acs.macromol.6b02330 .
Moreno J, Sherrington D C . Chem Mater , 2008 . 20 ( 13 ): 4468 - 4474 . DOI:10.1021/cm703436nhttp://doi.org/10.1021/cm703436n .
Cheng L, Cao D . ACS Nano , 2011 . 5 ( 2 ): 1102 - 1108 . DOI:10.1021/nn102754ghttp://doi.org/10.1021/nn102754g .
Yamamoto S, Tsujii Y, Fukuda T . Macromolecules , 2000 . 33 ( 16 ): 5995 - 5998 . DOI:10.1021/ma000225uhttp://doi.org/10.1021/ma000225u .
Yamamoto S, Ejaz M, Tsujii Y, Fukuda T . Macromolecules , 2000 . 33 ( 15 ): 5608 - 5612 . DOI:10.1021/ma991988ohttp://doi.org/10.1021/ma991988o .
Jones D M, Brown A A, Huck W T S . Langmuir , 2002 . 18 ( 4 ): 1265 - 1269 . DOI:10.1021/la011365fhttp://doi.org/10.1021/la011365f .
Yamamoto S, Tsujii Y, Fukuda T . Macromolecules , 2002 . 35 ( 16 ): 6077 - 6079 . DOI:10.1021/ma0255128http://doi.org/10.1021/ma0255128 .
Ejaz M, Ohno K, Tsujii Y, Fukuda T . Macromolecules , 2000 . 33 ( 8 ): 2870 - 2874 . DOI:10.1021/ma991927qhttp://doi.org/10.1021/ma991927q .
Michalek L, Mundsinger K, Barner-Kowollik C, Barner L . Polym Chem , 2019 . 10 ( 1 ): 54 - 59 . DOI:10.1039/C8PY01470Ahttp://doi.org/10.1039/C8PY01470A .
Liu H, Zhao H Y, Müller-Plathe F, Qian H J, Sun Z Y, Lu Z Y . Macromolecules , 2018 . 51 ( 10 ): 3758 - 3766 . DOI:10.1021/acs.macromol.8b00309http://doi.org/10.1021/acs.macromol.8b00309 .
Zehm D, Ratcliffe L P D, Armes S P . Macromolecules , 2013 . 46 ( 1 ): 128 - 139 . DOI:10.1021/ma301459yhttp://doi.org/10.1021/ma301459y .
Brotherton E E, Hatton F L, Cockram A A, Derry M J, Czajka A, Cornel E J, Topham P D, Mykhaylyk O O, Armes S P . J Am Chem Soc , 2019 . 141 ( 34 ): 13664 - 13675 . DOI:10.1021/jacs.9b06788http://doi.org/10.1021/jacs.9b06788 .
Chen X, Liu L, Huo M, Zeng M, Peng L, Feng A, Wang X, Yuan J . Angew Chem Int Ed , 2017 . 56 ( 52 ): 16541 - 16545 . DOI:10.1002/anie.201709129http://doi.org/10.1002/anie.201709129 .
Oliver A M, Gwyther J, Boott C E, Davis S, Pearce S, Manners I . J Am Chem Soc , 2018 . 140 ( 51 ): 18104 - 18114 . DOI:10.1021/jacs.8b10993http://doi.org/10.1021/jacs.8b10993 .
Liu X, Sun M, Sun J, Hu J, Wang Z, Guo J, Gao W . J Am Chem Soc , 2018 . 140 ( 33 ): 10435 - 10438 . DOI:10.1021/jacs.8b06013http://doi.org/10.1021/jacs.8b06013 .
Warren N J, Armes S P . J Am Chem Soc , 2014 . 136 ( 29 ): 10174 - 10185 . DOI:10.1021/ja502843fhttp://doi.org/10.1021/ja502843f .
Warren N J, Mykhaylyk O O, Ryan A J, Williams M, Doussineau T, Dugourd P, Antoine R, Portale G, Armes S P . J Am Chem Soc , 2015 . 137 ( 5 ): 1929 - 1937 . DOI:10.1021/ja511423mhttp://doi.org/10.1021/ja511423m .
Warren N J, Mykhaylyk O O, Mahmood D, Ryan A J, Armes S P . J Am Chem Soc , 2014 . 136 ( 3 ): 1023 - 1033 . DOI:10.1021/ja410593nhttp://doi.org/10.1021/ja410593n .
Parkatzidis K, Wang H S, Truong N P, Anastasaki A . Chem , 2020 . 6 ( 7 ): 1575 - 1588 . DOI:10.1016/j.chempr.2020.06.014http://doi.org/10.1016/j.chempr.2020.06.014 .
Huang F, Lv Y, Wang L, Xu P, Lin J, Lin S . Soft Matter , 2016 . 12 ( 30 ): 6422 - 6429 . DOI:10.1039/C6SM00912Chttp://doi.org/10.1039/C6SM00912C .
Lv Y, Wang L, Liu F, Feng W, Wei J, Lin S . Soft Matter , 2020 . 16 ( 14 ): 3466 - 3475 . DOI:10.1039/D0SM00244Ehttp://doi.org/10.1039/D0SM00244E .
Nakagawa K M, Noguchi H . Soft Matter , 2015 . 11 ( 7 ): 1403 - 1411 . DOI:10.1039/C4SM02571Ghttp://doi.org/10.1039/C4SM02571G .
Nakagawa K M, Noguchi H . Soft Matter , 2018 . 14 ( 8 ): 1397 - 1407 . DOI:10.1039/C7SM02326Jhttp://doi.org/10.1039/C7SM02326J .
He W D, Sun X L, Wan W M, Pan C Y . Macromolecules , 2011 . 44 ( 9 ): 3358 - 3365 . DOI:10.1021/ma2000674http://doi.org/10.1021/ma2000674 .
Han Y, Yu H, Du H, Jiang W . J Am Chem Soc , 2010 . 132 ( 3 ): 1144 - 1150 . DOI:10.1021/ja909379yhttp://doi.org/10.1021/ja909379y .
Yan Y D, Xue Y H, Zhao H Y, Liu H, Lu Z Y, Gu F L . Macromolecules , 2019 . 52 ( 16 ): 6169 - 6180 . DOI:10.1021/acs.macromol.9b01051http://doi.org/10.1021/acs.macromol.9b01051 .
Cheng S Z D, Wunderlich B . J Polym Sci Part B: Polym Phys , 1986 . 24 ( 3 ): 577 - 594 . DOI:10.1002/polb.1986.090240308http://doi.org/10.1002/polb.1986.090240308 .
Cheng S Z D, Wunderlich B . J Polym Sci Part B: Polym Phys , 1986 . 24 ( 3 ): 595 - 617 . DOI:10.1002/polb.1986.090240309http://doi.org/10.1002/polb.1986.090240309 .
Corrigan N, Almasri A, Taillades W, Xu J, Boyer C . Macromolecules , 2017 . 50 ( 21 ): 8438 - 8448 . DOI:10.1021/acs.macromol.7b01890http://doi.org/10.1021/acs.macromol.7b01890 .
Rubens M, Junkers T . Polym Chem , 2019 . 10 ( 42 ): 5721 - 5725 . DOI:10.1039/C9PY01012Bhttp://doi.org/10.1039/C9PY01012B .
Tan R, Zhou D, Liu B, Sun Y, Liu X, Ma Z, Kong D, He J, Zhang Z, Dong X H . Chem Sci , 2019 . 10 ( 46 ): 10698 - 10705 . DOI:10.1039/C9SC04736Khttp://doi.org/10.1039/C9SC04736K .
Whitfield R, Truong N P, Messmer D, Parkatzidis K, Rolland M, Anastasaki A . Chem Sci , 2019 . 10 ( 38 ): 8724 - 8734 . DOI:10.1039/C9SC03546Jhttp://doi.org/10.1039/C9SC03546J .
Lynd N A, Hillmyer M A, Matsen M W . Macromolecules , 2008 . 41 ( 12 ): 4531 - 4533 . DOI:10.1021/ma800452yhttp://doi.org/10.1021/ma800452y .
Webster O W . Science , 1991 . 251 ( 4996 ): 887 - 893 . DOI:10.1126/science.251.4996.887http://doi.org/10.1126/science.251.4996.887 .
Liu H, Xue Y H, Zhu Y L, Gu F L, Lu Z Y . Macromolecules , 2020 . 53 ( 15 ): 6409 - 6419 . DOI:10.1021/acs.macromol.0c01383http://doi.org/10.1021/acs.macromol.0c01383 .
Raaijmakers M J T, Benes N E . Prog Polym Sci , 2016 . 63 86 - 142 . DOI:10.1016/j.progpolymsci.2016.06.004http://doi.org/10.1016/j.progpolymsci.2016.06.004 .
Yang S, Liu H . J Mater Chem , 2006 . 16 ( 46 ): 4480 - 4487 . DOI:10.1039/b612013jhttp://doi.org/10.1039/b612013j .
Xu Jiangfei(徐江飞), Zhang Xi(张希) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 1 ): 37 - 49 . DOI:10.11777/j.issn1000-3304.2017.16262http://doi.org/10.11777/j.issn1000-3304.2017.16262 .
Xing J Y, Xue Y H, Lu Z Y, Liu H . Macromolecules , 2019 . 52 ( 17 ): 6393 - 6404 . DOI:10.1021/acs.macromol.9b01033http://doi.org/10.1021/acs.macromol.9b01033 .
Qin B, Zhang S, Song Q, Huang Z, Xu J F, Zhang X . Angew Chem Int Ed , 2017 . 56 ( 26 ): 7639 - 7643 . DOI:10.1002/anie.201703572http://doi.org/10.1002/anie.201703572 .
0
浏览量
43
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构