浏览全部资源
扫码关注微信
精细化工国家重点实验室 大连理工大学化工学院 大连 116024
E-mail: wmren@dlut.edu.cn
纸质出版日期:2021-07-20,
网络出版日期:2021-05-25,
收稿日期:2021-01-13,
修回日期:2021-02-02,
扫 描 看 全 文
刘文静,乐天俊,任伟民.氮丙啶衍生物与环状酸酐共聚合成聚酯酰胺[J].高分子学报,2021,52(07):717-722.
Wen-jing Liu, Tian-jun Yue, Wei-min Ren. Copolymerization of Aziridine Derivatives and Cyclic Anhydrides to Form Poly(ester amide)s[J]. ACTA POLYMERICA SINICA, 2021,52(7):717-722.
刘文静,乐天俊,任伟民.氮丙啶衍生物与环状酸酐共聚合成聚酯酰胺[J].高分子学报,2021,52(07):717-722. DOI: 10.11777/j.issn1000-3304.2021.21011.
Wen-jing Liu, Tian-jun Yue, Wei-min Ren. Copolymerization of Aziridine Derivatives and Cyclic Anhydrides to Form Poly(ester amide)s[J]. ACTA POLYMERICA SINICA, 2021,52(7):717-722. DOI: 10.11777/j.issn1000-3304.2021.21011.
开发高效合成聚酯酰胺的方法一直是该领域研究的重点和难点. 本文发展了一种以有机碱为催化剂,以苄醇为引发剂,先通过易合成的氮丙啶衍生物与环状酸酐反应得到
N
-取代的共聚物,再通过氧化法由K
2
S
2
O
8
/Na
2
HPO
4
体系脱去氮原子上取代基从而合成聚酯酰胺的新方法. 通过该方法合成了9种不同结构的聚酯酰胺,为其在生物医学领域的应用提供了新的选择.
Poly(ester amide)s (PEAs) are important synthetic polymeric materials. The excellent biodegradability and mechanical properties make the synthesis of such kinds polymers a research hotspot in the field of polymer chemistry. Herein
we report a novel strategy for accessing PEAs
via
the alternating copolymerization of easily synthesized aziridine derivatives and cyclic anhydrides with binary catalytic system consisting of benzyl alcohol (BnOH) and organic base (7-methyl-1
5
7-triazabicyclo[4.4.0]dec-5-ene (MTBD)) as catalyst
followed by the deprotection for the substitutes on the N atoms groups of the resultant copolymers using K
2
S
2
O
8
/Na
2
HPO
4
system. A detailed study on the debenzylation reaction was carried out. It was found that the K
2
S
2
O
8
/Na
2
HPO
4
system can effectively realize the debenzylation reaction involving the copolymer from 2
4-dimethoxy
-N
-benzylaziridine. The nine kinds of PEAs with different structures were synthesized from two types of monomers. The metal-free strategy
give these PEAs the potential to be utilized as hydrogels
tissue engineering
elastomers and smart materials as well as high-performance engineering plastics. Studies focused on further expanding the monomer scope and controlling the stereochemistry are currently in progress.
聚酯酰胺脱苄基化反应无金属催化交替共聚
Poly(ester amide)sDebenzylationMetal-free catalysisAlternating copolymerization
Ranganathan P, Chen C W, Rwei S P, Lee Y H, Ramaraj S K. Polym Degrad Stabil, 2020, 181: 109323. doi:10.1016/j.polymdegradstab.2020.109323http://dx.doi.org/10.1016/j.polymdegradstab.2020.109323
Winnacker M, Rieger B. Polym Chem, 2016, 7: 7039-7046. doi:10.1039/c6py01783ehttp://dx.doi.org/10.1039/c6py01783e
Gao Han(高晗), Xu Jun(徐军), Hu Xin(胡欣), Zhu Ning(朱宁), Guo Kai(郭凯). Progress in Chemistry(化学进展), 2018, (11): 1634-1645. doi:10.7536/PC180335http://dx.doi.org/10.7536/PC180335
Montané J, Armelin E, Asín L, Rodríguez G A, Puiggalí J. J Appl Polym Sci, 2002, 85: 1815-1824. doi:10.1002/app.10379http://dx.doi.org/10.1002/app.10379
Kluge M, Papadopoulos L, Magaziotis A, Tzetzis D, Zamboulis A, Bikiaris D N, Robert T. ACS Sustain Chem Eng, 2020, 8: 10812-10821
Abid M, Mhiri S, Bougarech A, Triki R, Abid S. Des Monomers Polym, 2020, 23: 16-24. doi:10.1080/15685551.2020.1727171http://dx.doi.org/10.1080/15685551.2020.1727171
Nakayama Y, Watanabe K, Tanaka R, Shiono T, Kawasaki N, Yamano N, Nakayama A. Int J Mol Sci, 2020, 21: 3674-3686. doi:10.3390/ijms21103674http://dx.doi.org/10.3390/ijms21103674
Wu D H, Zhang X R, Chen Y J, Yu S C, Zhao H T. Korean J Chem Eng, 2020, 37: 307-321. doi:10.1007/s11814-019-0426-4http://dx.doi.org/10.1007/s11814-019-0426-4
Rodríguez G A, Franco L, Puiggalí J. Biodegradable Polymers: Processing, Degradation and Applications. New York: Nova Science Publisher, 2011. 207-272
Fonseca A C, Gil M H, Simões P N. Prog Polym Sci, 2014, 39: 1291-1311. doi:10.1016/j.progpolymsci.2013.11.007http://dx.doi.org/10.1016/j.progpolymsci.2013.11.007
Rodriguez-Galan A, Franco L, Puiggali J. Polymers, 2011, 3: 65-99. doi:10.3390/polym3010065http://dx.doi.org/10.3390/polym3010065
Hadjichristidis N, Xu J X. Angew Chem Int Ed, 2021, 60: 6949-6954. doi:10.1002/anie.202015339http://dx.doi.org/10.1002/anie.202015339
Nissen D, Gilon C, Goodman M. Macromol Chem Phys, 1975, 1: 23-53. doi:10.1002/macp.1975.020011975103http://dx.doi.org/10.1002/macp.1975.020011975103
Feng Y K, Klee D, Höcker H. J Appl Polym Sci, 2002, 86: 2916-2919. doi:10.1002/app.10461http://dx.doi.org/10.1002/app.10461
Sanchez S A, Basterretxea A, Mantione D, Etxeberria A, Elizetxea C, de la Calle A, García A S, Sardon H,Mecerreyes D. J Polym Sci, Part A: Polym Chem, 2016, 54: 2394-2402. doi:10.1002/pola.28114http://dx.doi.org/10.1002/pola.28114
Wilsens C H R M, Wullems N J M, Gubbels E, Yao Y, Rastogi S, Noordover B A J. Polym Chem, 2015, 6: 2707-2716. doi:10.1039/c4py01609bhttp://dx.doi.org/10.1039/c4py01609b
Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro Lett, 2012, 1: 1300-1303. doi:10.1021/mz300456phttp://dx.doi.org/10.1021/mz300456p
Cui Y, Zhang M, Du F S, Li Z C. ACS Macro Lett, 2017, 6: 11-15. doi:10.1021/acsmacrolett.6b00833http://dx.doi.org/10.1021/acsmacrolett.6b00833
Xia T, Yue T J, Gu G G, Wan Z Q, Li Z L, Ren W M. Eur Polym J, 2020, 136: 109900. doi:10.1016/j.eurpolymj.2020.109900http://dx.doi.org/10.1016/j.eurpolymj.2020.109900
Yoshida K, Nakajima S, Wakamatsu T, Ban Y, Shibasaki M. Heterocycles, 1988, 27: 1167-1168. doi:10.3987/com-88-4525http://dx.doi.org/10.3987/com-88-4525
Chen S P, Liu D Q, Si L L, Chen L G, Yan X L. Synth Commun, 2017, 47: 238-244. doi:10.1080/00397911.2016.1261164http://dx.doi.org/10.1080/00397911.2016.1261164
Baker S R, Parsons A F, Wilson M. Tetrahedron Lett, 1998, 39: 331-332. doi:10.1016/s0040-4039(97)10480-4http://dx.doi.org/10.1016/s0040-4039(97)10480-4
Huffman W F, Holden K G, Buckley III T F, Gleason J G, Wu L. J Am Chem Soc, 1977, 99: 2352-2353. doi:10.1021/ja00449a062http://dx.doi.org/10.1021/ja00449a062
0
浏览量
87
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构