浏览全部资源
扫码关注微信
1.苏州大学材料与化学化工学部
2.江苏百赛飞生物科技有限公司 苏州 215123
E-mail: lidan@suda.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-07-25,
收稿日期:2021-01-19,
修回日期:2021-03-13,
扫 描 看 全 文
黄佳磊,郁李胤,王境鸿等.可持续抗非特异性蛋白质吸附的凝血酶响应型水凝胶涂层[J].高分子学报,2021,52(09):1118-1128.
Huang Jia-lei,Yu Li-yin,Wang Jing-hong,et al.Thrombin-responsive Hydrogel Coating with Sustainable Resistance to Nonspecific Protein Adsorption[J].ACTA POLYMERICA SINICA,2021,52(09):1118-1128.
黄佳磊,郁李胤,王境鸿等.可持续抗非特异性蛋白质吸附的凝血酶响应型水凝胶涂层[J].高分子学报,2021,52(09):1118-1128. DOI: 10.11777/j.issn1000-3304.2021.21017.
Huang Jia-lei,Yu Li-yin,Wang Jing-hong,et al.Thrombin-responsive Hydrogel Coating with Sustainable Resistance to Nonspecific Protein Adsorption[J].ACTA POLYMERICA SINICA,2021,52(09):1118-1128. DOI: 10.11777/j.issn1000-3304.2021.21017.
仿生人体血液系统抗凝机制,在异体材料表面构建兼具生物惰性和响应性抗凝活性的涂层,是解决血液接触类器械在应用过程中引发血栓生成的理想路径. 为此,本研究设计了一种能够持续性抗非特异性蛋白吸附并可特异性抑制血栓形成的凝血酶响应性水凝胶涂层. 该涂层以聚乙二醇二丙烯酸酯(PEGDA)为主要骨架成分,结合凝血酶底物多肽交联剂(Pep)和纤溶活性分子——组织型纤溶酶原激活剂(t-PA),经光致交联固定在基材表面. 在血液环境中,涂层能够有效保持抗非特异性蛋白吸附的性能. 而在血栓形成条件下,凝血酶触发水凝胶缓慢降解,释放t-PA分子,从而激发血液系统的纤溶功能溶解初生血栓. 更有意义的是,降解后的水凝胶涂层能够保持基本骨架并仍具有抗蛋白吸附性能. 本研究为优化和完善植介入器械抗血栓策略提供了新的思路.
Constructing the surface coating with both biological inertness and responsive antithrombotic activity is an ideal way to solve the problem of foreign-material induced thrombosis in the applications of blood-contact medical devices. In this work
a thrombin-responsive hydrogel coating is designed and prepared based on one-step photocuring. The coating can sustainably resist non-specific protein adsorption and specifically inhibit thrombus formation in a thrombosis responsible way. Poly(ethylene glycol diacrylate) (PEGDA) and a thrombin-cleavable peptide (Pep) were used in the photo-initiated polymerization system. PEGDA worked as the main skeleton component as well as crosslinker
and the peptide mainly as the thrombin-cleavable crosslinker. The fibrinolytic molecule
tissue plasminogen activator (t-PA)
was loaded during the hydrogel forming. The results showed that the coating could keep resistance to non-specific protein adsorption in normal blood environment and specifically trigger the release of t-PA in the presence of thrombin so that the nascent clot can be lysed. Moreover
the hydrogel coating could maintain the basic skeleton and thus the resistance to protein adsorption could be kept even after degradation by thrombin. In general
this research provides new ideas for optimizing the anti-thrombotic properties of blood contacting medical devices.
抗蛋白吸附水凝胶涂层抗血栓表面纤溶
Anti-protein adsorptionHydrogel coatingAnti-thrombotic surfaceFibrinolysis
Sukavaneshvar S. Adv Drug Deliv Rev, 2017, 112: 24-34. doi:10.1016/j.addr.2016.07.009http://dx.doi.org/10.1016/j.addr.2016.07.009
Reviakine I, Jung F, Braune S, Brash J L, Latour R, Gorbet M, van Oeveren W. Blood Rev, 2017, 31(1): 11-21. doi:10.1016/j.blre.2016.07.003http://dx.doi.org/10.1016/j.blre.2016.07.003
Mackman N. Nature, 2008, 451(7181): 914-918. doi:10.1038/nature06797http://dx.doi.org/10.1038/nature06797
Stricker R B, Wong D, Shiu D T, Reyes P T, Shuman M A. Blood, 1986, 68(1): 275-280. doi:10.1182/blood.v68.1.275.bloodjournal681275http://dx.doi.org/10.1182/blood.v68.1.275.bloodjournal681275
Liu X, Yuan L, Li D, Tang Z, Wang Y, Chen G, Chen H, Brash J L. J Mater Chem B, 2014, 2(35): 5718-5738. doi:10.1039/c4tb00881bhttp://dx.doi.org/10.1039/c4tb00881b
Qi P, Maitz M F, Huang N. Surf Coat Technol, 2013, 233: 80-90. doi:10.1016/j.surfcoat.2013.02.008http://dx.doi.org/10.1016/j.surfcoat.2013.02.008
Gorbet M B, Sefton M V. Biomaterials, 2004, 25(26): 5681-5703. doi:10.1016/j.biomaterials.2004.01.023http://dx.doi.org/10.1016/j.biomaterials.2004.01.023
Liu S, Feng X, Jin R, Li G. Expert Opin Drug Del, 2018, 15(2): 173-184. doi:10.1080/17425247.2018.1384464http://dx.doi.org/10.1080/17425247.2018.1384464
Biran R, Pond D. Adv Drug Deliv Rev, 2017, 112: 12-23. doi:10.1016/j.addr.2016.12.002http://dx.doi.org/10.1016/j.addr.2016.12.002
Drozdov A S, Vinogradov V V, Dudanov I P, Vinogradov V V. Sci Rep, 2016, 6(1): 28119. doi:10.1038/srep28119http://dx.doi.org/10.1038/srep28119
Wu C, Zhou Y, Wang H, Hu J, Wang X. J Saudi Chem Soc, 2019, 23(8): 1080-1089. doi:10.1016/j.jscs.2019.05.011http://dx.doi.org/10.1016/j.jscs.2019.05.011
Lowe S, O'Brien-Simpson N M, Connal L A. Polym Chem, 2015, 6(2): 198-212. doi:10.1039/c4py01356ehttp://dx.doi.org/10.1039/c4py01356e
Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J. J Membr Sci, 2013, 436: 163-173. doi:10.1016/j.memsci.2013.02.009http://dx.doi.org/10.1016/j.memsci.2013.02.009
Kostina N Y, Sharifi S, de Los Santos Pereira A, Michalek J, Grijpma D W, Rodriguez-Emmenegger C. J Mater Chem B, 2013, 1(41): 5644-5650. doi:10.1039/c3tb20704hhttp://dx.doi.org/10.1039/c3tb20704h
Irfan M, Basri H, Irfan M, Lau W J. RSC Adv, 2015, 5(116): 95421-95432. doi:10.1039/c5ra11344jhttp://dx.doi.org/10.1039/c5ra11344j
Sun M, Su Y, Mu C, Jiang Z. Ind Eng Chem Res, 2010, 49(2): 790-796. doi:10.1021/ie900560ehttp://dx.doi.org/10.1021/ie900560e
Vales T P, Jee J P, Lee W Y, Cho S, Lee G M, Kim H J, Kim J S. Materials, 2020, 13(4):943-955. doi:10.3390/ma13040943http://dx.doi.org/10.3390/ma13040943
Sin M C, Sun Y M, Chang Y. ACS Appl Mater Interfaces, 2014, 6(2): 861-873. doi:10.1021/am4041256http://dx.doi.org/10.1021/am4041256
Chen S, Li L, Zhao C, Zheng J. Polymer, 2010, 51(23): 5283-5293. doi:10.1016/j.polymer.2010.08.022http://dx.doi.org/10.1016/j.polymer.2010.08.022
Vinogradov V V, Drozdov A S, Mingabudinova L R, Shabanova E M, Kolchina N O, Anastasova E I, Markova A A, Shtil A A, Milichko V A, Starova G L, Precker R L M, Vinogradov A V, Hey-Hawkins E, Pidko E A. J Mater Chem B, 2018, 6(16): 2450-2459. doi:10.1039/c8tb00072ghttp://dx.doi.org/10.1039/c8tb00072g
Alibeik S, Zhu S, Brash J L. Colloids Surf B, 2010, 81(2): 389-396. doi:10.1016/j.colsurfb.2010.07.024http://dx.doi.org/10.1016/j.colsurfb.2010.07.024
Nilsson P H, Engberg A E, Back J, Faxalv L, Lindahl T L, Nilsson B, Ekdahl K N. Biomaterials, 2010, 31(16): 4484-4491. doi:10.1016/j.biomaterials.2010.02.036http://dx.doi.org/10.1016/j.biomaterials.2010.02.036
Senatore F, Bernath F, Meisner K. J Biomed Mater Res, 1986, 20(2): 177-188. doi:10.1002/jbm.820200207http://dx.doi.org/10.1002/jbm.820200207
Chapurina Y, Vinogradov V V, Vinogradov A V, Sobolev V E, Dudanov I P, Vinogradov V V. J Med Chem, 2015, 58(15): 6313-6317. doi:10.1021/acs.jmedchem.5b00654http://dx.doi.org/10.1021/acs.jmedchem.5b00654
Wu Z, Chen H, Li D, Brash J L. Acta Biomater, 2011, 7(5): 1993-1998. doi:10.1016/j.actbio.2011.01.026http://dx.doi.org/10.1016/j.actbio.2011.01.026
Mackman N, Bergmeier W, Stouffer G A, Weitz J I. Nat Rev Drug Discov, 2020, 19(5): 333-352. doi:10.1038/s41573-020-0061-0http://dx.doi.org/10.1038/s41573-020-0061-0
Gunawan S T, Kempe K, Bonnard T, Cui J, Alt K, Law L S, Wang X, Westein E, Such G K, Peter K, Hagemeyer C E, Caruso F. Adv Mater Technol, 2015, 27(35): 5153-5157. doi:10.1002/adma.201502243http://dx.doi.org/10.1002/adma.201502243
Li C, Du H, Yang A, Jiang S, Li Z, Li D, Brash J L, Chen H. Adv Funct Mater, 2017, 27(45): 1703931-1703934. doi:10.1002/adfm.201703934http://dx.doi.org/10.1002/adfm.201703934
Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Macromol Mater Eng, 2018, 303(12): 1800233. doi:10.1002/mame.201800233http://dx.doi.org/10.1002/mame.201800233
Nemir S, Hayenga H N, West J L. Biotechnol Bioeng, 2010, 105(3): 636-644. doi:10.1002/bit.22574http://dx.doi.org/10.1002/bit.22574
Ayhan F, Ozkan S. Drug Deliv, 2007, 14(7): 433-439. doi:10.1080/10717540701202911http://dx.doi.org/10.1080/10717540701202911
Gombotz W R, Wang G H, Horbett T A, Hoffman A S. J Biomed Mater Res, 1991, 25(12): 1547-1562. doi:10.1002/jbm.820251211http://dx.doi.org/10.1002/jbm.820251211
Jeon S I, Andrade J D. J Colloid Interface Sci, 1991, 142(1): 159-166. doi:10.1016/0021-9797(91)90044-9http://dx.doi.org/10.1016/0021-9797(91)90044-9
Gombotz W R, Guanghui W, Hoffman A S. J Appl Polym Sci, 1989, 37(1): 91-107. doi:10.1002/app.1989.070370108http://dx.doi.org/10.1002/app.1989.070370108
Li D, Chen H, Wang S, Wu Z, Brash J L. Acta Biomater, 2011, 7(3): 954-958. doi:10.1016/j.actbio.2010.10.021http://dx.doi.org/10.1016/j.actbio.2010.10.021
Li D, Wang S, Wu Z, Chen H, Brash J L. Soft Matter, 2013, 9(7): 2321-2328. doi:10.1039/c2sm27306chttp://dx.doi.org/10.1039/c2sm27306c
Chen H, Chen Y, Sheardown H, Brook M A. Biomaterials, 2005, 26(35): 7418-7424. doi:10.1016/j.biomaterials.2005.05.053http://dx.doi.org/10.1016/j.biomaterials.2005.05.053
Zheng J, Song W, Huang H, Chen H. Colloid Surface B, 2010, 77(2): 234-239. doi:10.1016/j.colsurfb.2010.01.032http://dx.doi.org/10.1016/j.colsurfb.2010.01.032
Du H, Li C, Luan Y, Liu Q, Yang W, Yu Q, Li D, Brash J L, Chen H. Mater Horiz, 2016, 3(6): 556-562. doi:10.1039/c6mh00307ahttp://dx.doi.org/10.1039/c6mh00307a
Huang D, Wu K, Zhang Y, Ni Z, Zhu X, Zhu C, Yang J, ZhuGe Q, Hu J. Rev Adv Mater Sci, 2019, 58(1): 159-170. doi:10.1515/rams-2019-0024http://dx.doi.org/10.1515/rams-2019-0024
Chang M, Lin Y H, Gabayno J L, Li Q, Liu X. Bioengineered, 2017, 8(1): 29-35. doi:10.1080/21655979.2016.1227145http://dx.doi.org/10.1080/21655979.2016.1227145
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构