纸质出版日期:2021-6-3,
网络出版日期:2021-4-26,
收稿日期:2021-1-21,
修回日期:2021-2-15
扫 描 看 全 文
引用本文
阅读全文PDF
分子尺度电子学是利用单个分子或分子单层组装体作为活性单元来实现电子学功能的一门前沿科学领域. 基于自组装单分子膜(SAMs)的分子器件在分子电子学的实用化道路上具有很大的发展潜力与应用前景. 目前,SAMs功能器件的研究仍处于起步阶段,其性能还有很大提升空间. 本文首先评述了SAMs器件的构筑方法,针对直接蒸镀金属顶电极会对SAMs造成破坏的问题,介绍了3类软接触电极,包括液态金属、导电高分子和石墨烯顶电极;然后以固态光开关器件为例介绍了近年来功能器件上的一些新进展,分子优化设计对于提升器件响应活性具有重要意义;同时总结了共轭聚合物SAMs器件的制备方法和性能,通过合理的结构设计,共轭聚合物能进行电荷的长程输运,并有望提供比小分子更优异的光电功能;最后讨论和展望了未来的发展方向.
Molecular-scale electronics is a cutting edge research field aimed at achieving electronic functions by utilizing single molecules and their monolayer assemblies as active components. Molecular devices based on self-assembled monolayers (SAMs) show high potential towards the application of molecular electronics in the future. However, the development of functional SAM devices is still in its infancy, and their performance is far from meeting the requirements of practical applications. In this review, we first summarize the methods for fabricating SAM devices using soft top-contact electrodes, including liquid metals (mercury and Ga/In eutectic), conductive polymers (e.g., PEDOT: PSS) and graphene, and graphene has been considered as an ideal choice for building SAM devices because of it high electrical conductivity, mechanical flexibility, chemical stability, optical transparency and processability. Then we introduce recent progress on functional SAM devices, especially solid-state photoswitchable devices, and we highlight that rational molecular design (anchor, linker, and functional group) is crucial for improving the device performance. For example, molecular engineering strategies overcoming intermolecular steric hindrance can boost the photoisomerization ability of azobenzenes in SAMs and thus the photo-responsibility of their photoswitchable devices. We also provide an overview on how to fabricate conjugated polymers based SAM devices and discuss their charge transport behaviors in two kinds of junctions,i.e., vertical and planar junctions. These results indicate that conjugated polymerss are distinct from small molecular materials and may hold advantages in optoelectronic functions. For example, properly designed conjugated polymers can mediate long-range charge transport and thus act as molecular wires. Moreover, functional SAM devices based on conjugated polymers can outperform the small molecular counterpart on key device performance, such as on-off ratios for optoelectronic switches. Finally, a perspective on future research directions and challenges in this field is presented.
Solid-state functional devices incorporating self-assembled monolayers are promising platforms for the application of molecular electronics in future.
有机分子材料具有结构性质可调、易于自组装以及质轻、价廉、柔韧性好和可溶液加工等优点,对功能材料与器件的发展产生了深远的影响,分子电子学(molecular electronics)及其相关领域的研究近年来成为热点. 从广义上讲,分子电子学利用有机功能分子的光、电、磁等性质,致力于新一代有机电子器件和产品的开发应用[
与气相沉积制备的单分子层不同,自组装单分子膜(self-assembled monolayers,SAMs)是一类由分子自发形成的有序致密的单分子层薄膜体系. 一方面,SAMs作为一类特殊的二维分子薄膜,为拓展有机薄膜器件的研究提供了理想的平台;另一方面,在分子尺度电子学中,SAMs相比于单个分子具有更好的稳定性和可操控性,器件制备的重复性更好,技术上更利于大面积集成,因而SAMs器件在未来的实用化道路上具有更大的优势[
虽然分子尺度电子学已取得了一系列重要进展,但SAMs功能器件的开发仍处于起步阶段,距离实际应用还有很长的距离. 器件构筑方法的创新与功能分子的设计是推动该领域发展进步的关键. 本文将结合本课题组的研究工作,评述近年来器件构筑方法与分子优化设计上的代表性成果,并介绍基于共轭聚合物的SAMs器件的研究现状.
电极表面形成了SAMs之后,只需覆盖上顶电极(top electrode)就形成了SAMs器件的核心结构:即电极/SAMs/电极分子结(molecular junction). 顶电极可以直接蒸镀沉积在SAMs表面,但大量研究表明该方法容易破坏分子体系或穿透SAMs造成短路,导致器件失效,器件的制备产率即有效器件的比例很低(1%~2%)[
用于构筑SAM分子结的液态金属有汞[
Fig 1 (a) Photograph (left) and model (right) of the mercury-drop electrode junction (Reprinted with permission from Ref.[
固态分子器件的构筑是分子电子学走向应用的关键. 2006年Boer课题组开辟了以导电高分子作为软接触电极来构筑固态SAMs器件的方法,他们通过旋涂将导电的PEDOT:PSS薄膜覆盖在生长有SAMs的微孔上,由于高分子薄膜对SAMs的保护,后续蒸镀金属电极不会对分子造成破坏,也不会造成短路,因而器件的产率高达95%以上,器件结构见
石墨烯具有电导率高、超薄、柔性和稳定性好等优点,是构筑固态分子器件理想的软接触电极. 2011年Lee课题组将CVD制备的多层石墨烯转移到生长有SAMs的微孔内,构筑了Au/SAMs/石墨烯分子结[
鉴于CVD石墨烯成本较高,且转移过程中去除高分子辅助层所需要的溶剂浸泡和高温退火过程,对SAMs的稳定性不利,本文作者发明了一种新工艺,即先通过溶液旋涂在硅片上制备氧化石墨烯薄膜,再对其高温还原得到高电导率的石墨烯rGO,然后无需高分子就能将其转移到SAMs上[
在上述工作基础上,我们近期优化了rGO的制备条件,使其性质更接近CVD石墨烯样品,由此实现了从室温到1 K以下温度范围内大面积SAMs器件的测试表征(
Fig 2 (a) Schematic illustration of SAMs device with high-quality rGO for sub-Kelvin Studies (Reprinted with permission from Ref.[
开关是电子系统的基础控制元件,因而开关器件的研究在分子电子学实用化的道路上有重要的地位[
由于光照具有清洁、定向、方便快捷和可远程控制等优点,光开关器件的研究受到了很大的重视[
与单分子相比,SAMs具有更高的稳定性,器件制备的重复性更好,技术上更利于大面积集成,由此构筑的光开关器件在未来实用化的道路上更具潜力. 2008年,Samorì课题组率先通过导电探针原子力显微镜(C-AFM)表征了偶氮苯SAMs在光照下的电导变化,发现了30倍的电流可逆升降[
对于固态光开关器件,不仅要考虑固态分子器件一般性的技术问题,还需要设计合适的透光窗口. 2008年,Boer课题组将二芳基乙烯分子组装在Au表面,以PEDOT:PSS为软接触电极(约90 nm厚),并覆盖上20 nm厚的金电极,构筑了首个固态光开关SAMs器件,如
Fig 3 (a) Schematic of a solid-state optoelectronic switch device sandwiching a diarylethene SAM with PEDOT:PSS top contact; (b) J-V curves of the device in different states (Reprinted with permission from Ref.[
相对于PEDOT:PSS,石墨烯具有很高的透光性,是构筑固态光开关的理想电极材料. 本文作者将5 nm厚的rGO (在300~800 nm的透过率高于80%)转移到vinylheptafulvene (VHF)的SAMs表面构建了固态开关器件(
石墨烯电极还适用于构建柔性的SAMs光开关器件. Lee课题组将Au底电极沉积在PET基底上,然后组装上二芳基乙烯分子,再以rGO为顶电极构筑了柔性的SAMs器件[
Fig 4 (a) Schematic and photograph of a transparent and flexible SAMs device with graphene-molecule-graphene structure on PET/PDMS substrate; (b) Structural model of a molecular monolayer junction between the two graphene electrodes; (c) Change in molecular tunneling barriers corresponding to photoisomerization of azobenzene molecules; (d) J-V curves of the device in different states (Adapted with permission from Ref.[
分子发生光异构时几何构型发生了变化,也就是说分子需要有足够的自由空间才能有效异构,而SAMs中分子一般是紧密排列的,来自相邻分子的位阻作用会限制光异构活性. 另外,分子间距离较近时容易发生激发态的电子耦合,这对光异构也是不利的. 因此,相对于溶液中,SAMs器件中分子的光异构速度和程度往往会被大大地抑制,这导致器件的光响应性能普遍较差. 上述介绍的光开关器件一般需要照射几十分钟才能达到充分的开关效果,而根据我们的经验,稀溶液中的光异构通常可在几十秒内完成.
对于偶氮苯分子,其在表面进行trans→cis异构所需的最少空间面积为0.4 nm2左右[
Fig 5 Azobenzene compounds used for SAMs and their footprint size on Au(111) surface: 1[
基于以上结果,我们认为,通过合理的分子设计,例如采用分子5和7的策略,所获得的SAMs中功能单元可不再受相邻分子或基底的影响,有望开发出快速响应的、双态稳定的光开关器件. 采用三角架或TATA为锚定基的另外一个优势是,偶氮苯垂直于基底表面,这种取向预计会带来开关比的提高(巯基锚定的SAMs中分子斜立于基底表面,因而偶氮苯的异构不能带来垂直方向上高度变化的最大化,不利于器件的大开关比).
为了使二芳基乙烯能在SAMs中保持独立性,我们课题组制备了二芳基乙烯-TATA分子[
Fig 6 (a) Scheme of the bidirectional photoisomerization of a TATA-containing diarylethene; (b) STM image of a SAM of the TATA-diarylethene on Au(111) (Reproduced with permission from Ref. [
分子本身的双向光异构产率和双态的稳定性是决定分子器件性能的本质因素. 虽然传统偶氮苯分子已在光响应分子材料与器件上获得了广泛的应用,但双向trans↔cis光异构产率均超过90%的偶氮苯分子很少,且cis异构体在室温下的热半衰期也一般不超过几天,把定量的双向光异构产率和长的cis异构体半衰期结合起来是颇具挑战性的目标. 将偶氮苯一侧的苯环替换为芳杂环,为开发高性能的偶氮光开关分子提供了诸多机遇[
Fig 7 Molecular structures and photoswitch property of two azopyrazoles: 8[
共轭聚合物拥有优异的光电性能,已成为有机电子学领域的主流分子材料[
相对于小分子,共轭聚合物在分子电子学领域有其独特的优势[
下面我们分别介绍聚合物SAMs器件中电荷的长程输运性质和功能性聚合物SAMs器件方面的重要进展,其中将穿插描述聚合物SAMs分子结的构筑方法.
短距离电荷传输的主要机制是遂穿(tunneling),隧穿电流随分子长度的增加而成指数形式的衰减,且受阻于遂穿势垒,即金属电极的费米能级和分子的前线轨道能级之间的差值;而当长度达到4~6 nm时,电荷输运将由跳跃(hopping) 机制所主导,电导值随分子长度而呈线性衰减[
Chio和Frisbie通过Au基底上的交替亚胺化反应制备了最长为20.2 nm共轭寡聚物OTPI的SAMs,见
Fig 8 (a) Synthetic route to OTPI SAMs on Au substrates; (b) Semilog plot of SAMs resistance versus molecular length for the Au/SAMs/Au junctions (inset: An Au-coated tip was brought into contact with an OTPI monolayer on Au substrate); (c) A linear plot of resistance versus molecular length for the junctions (the straight line is a linear fit that yields the conductivity using an estimated tip/wire contact area of 25 nm 2) (Adapted with permission from Ref.[
Tuccitto等通过金属离子(Fe2+或Co2+)和三联吡啶的交替配位反应在Au基底上生长了厚度达40 nm的配位聚合物SAMs,并以Hg滴为顶电极构建出了大面积(0.15 mm2)的SAMs分子结[
金属卟啉分子线的低电导衰减也受到了不少的关注[
以上研究表明,合理设计的共轭聚合物可以有效地长程输运电荷,有望用作分子电路的导线.
不同于上述从电极一端生长聚合物的方法,Taniguchi等开发了从两端向中间生长的方法,包括三步反应:第一步,将“引发剂”分子组装在两侧电极表面(该分子的一端为锚定基,另一端用于共价连接聚合物);第二步,将共轭低聚物接枝到引发分子上(共轭低聚物上套有环糊精,有利于削弱共轭链之间的作用);(3)用偶联分子连通共轭低聚物的两头(偶联分子可以为普通的共轭分子,也可以是功能性的共轭分子)[
最近,Hnid等将二芳基乙烯(带端氨基)通过重氮盐的电化学还原反应接枝在了Au电极表面,得到了多个二芳基乙烯相连的低聚物的分子层,并采用C-AFM构筑了分子结(
Fig 9 (a) Schematic representation of the diarylethene oligomer monolayer junction fabricated with C-AFM; (b, c) Conductance switching of the junctions with different monolayer thicknesses: (b) 3 nm and (c) 9 nm (Adapted with permission from Ref.[
上述介绍的聚合物分子结中,聚合物沿着链长方向贯穿分子结的两端,形成长链伸展的SAMs,其厚度远大于常见的小分子SAMs. 此外,聚合物还可以平铺在基底上形成超薄的单层膜. 对于这种平铺型的分子结,电荷传输遵循隧穿机制.
吡咯[
Wang等发现了一种新的平铺组装方式,如
Fig 10 (a) Chemical structures of PPE and TTF-PPE; (b) Schematic view of the device structure of self-assembled polymer tunneling junctions; (c) UV-Vis absorption spectra showing the cycling of TTF-PPE under repeated electrochemical oxidation and reduction; (d) Typical I-V characteristics of TTF-PPE junction under bias sweeps showing an “oxidation-current decrease-reduction-current recovery” trend (Adapted with permission from Ref.[
SAMs器件是研究单层分子性质的重要平台,是分子电子学走向应用的重要载体. 研究者们在器件结构和分子设计等方面做了不懈的努力,使得SAMs器件的制备产率、稳定性和功能有了很大提高. 在器件构筑上,以石墨烯为软接触电极是目前最为理想的固态器件构筑方法. 功能性固态SAMs器件的研究目前仍处于起步阶段,其性能还有很大提升空间,特别是需要解决功能分子在SAMs器件环境中活性受限的问题. 这需要对锚定基、桥联基和功能单元进行合理的分子设计,一方面提高功能单元本身的响应活性,另一方面避免电极对功能单元的电子耦合以及分子层内相邻分子的空间位阻.
基于共轭聚合物的SAMs器件已有少量研究,其SAMs分子结有不同的结构和电荷输运机制,电荷既可以沿聚合物链长程跳跃传输,也可以在平躺的聚合物层中遂穿. 通过合理的结构设计,共轭聚合物能在较弱的电导衰减情况下实现电荷的长程输运,有望用作分子导线. 在功能性SAMs器件方面,共轭聚合物相对于小分子的一些优势已经得到显示,例如:其光开关器件往往具有更高的开关比. 今后应当更加关注共轭聚合物在分子电子中的研究与应用,充分利用其结构与光电特性,与当前主流的小分子材料形成互补.
以有机分子为活性材料构建逻辑电路是分子电子学的最终应用目标. 当前的研究主要着眼于独立的分子结的性质,将多个分子结集成起来,探索集成分子电路的功能是充满挑战与机遇的努力方向.
Wang C, Dong H, Hu W, Liu Y, Zhu D . Chem Rev , 2012 . 112 ( 4 ): 2208 - 2267 . DOI:10.1021/cr100380z . [百度学术]
Huang X, Ji D, Fuchs H, Hu W, Li T . ChemPhotoChem , 2020 . 4 ( 1 ): 9 - 38 . DOI:10.1002/cptc.201900198 . [百度学术]
Ji D, Li T, Zou Y, Chu M, Zhou K, Liu J, Tian G, Zhang Z, Zhang X, Li L, Wu D, Dong H, Miao Q, Fuchs H, Hu W . Nat Commun , 2018 . 9 2339 DOI:10.1038/s41467-018-04665-z . [百度学术]
Ji D, Li T, Liu J, Amirjalayer S, Zhong M, Zhang Z, Huang X, Wei Z, Dong H, Hu W, Fuchs H . Nat Commun , 2019 . 10 12 DOI:10.1038/s41467-018-07943-y . [百度学术]
Ji D, Li T, Hu W, Fuchs H . Adv Mater , 2019 . 31 ( 15 ): 1806070 DOI:10.1002/adma.201806070 . [百度学术]
Ji D, Li T, Fuchs H . Nano Today , 2020 . 31 100843 DOI:10.1016/j.nantod.2020.100843 . [百度学术]
Bian Yangshuang(边洋爽), Liu Kai(刘凯), Guo Yunlong(郭云龙), Liu Yunqi(刘云圻) . Acta Chimica Sinica(化学学报) , 2020 . 78 ( 09 ): 848 - 864 . DOI:10.6023/A20050197 . [百度学术]
Joachim C, Ratner M A . P Natl Acad Sci USA , 2005 . 102 ( 25 ): 8801 - 8808 . DOI:10.1073/pnas.0500075102 . [百度学术]
Jiang Lang(江浪), Huang Guifang(黄桂芳), Li Hongxiang(李洪祥), Li Xiaofan(李小凡), Hu Wenping(胡文平), Liu Yunqi(刘云圻), Zhu Daoben(朱道本) . Progress in Chemistry(化学进展) , 2005 . ( 1 ): 172 - 179 . DOI:10.3321/j.issn:1005-281X.2005.01.020 . [百度学术]
Li T, Hu W, Zhu D . Adv Mater , 2010 . 22 ( 2 ): 286 - 300 . DOI:10.1002/adma.200900864 . [百度学术]
Ai Yong(艾勇), Zhang Haoli(张浩力) . Acta Physico-Chimica Sinica(物理化学学报) , 2012 . 28 ( 10 ): 2237 - 2248 . DOI:10.3866/PKU.WHXB201209102 . [百度学术]
Xiang D, Wang X, Jia C, Lee T, Guo X . Chem Rev , 2016 . 116 ( 7 ): 4318 - 4440 . DOI:10.1021/acs.chemrev.5b00680 . [百度学术]
Zhang X, Li T . Chinese Chem Lett , 2017 . 28 ( 11 ): 2058 - 2064 . DOI:10.1016/j.cclet.2017.09.008 . [百度学术]
Jeong H, Kim D, Xiang D, Lee T . ACS Nano , 2017 . 11 ( 7 ): 6511 - 6548 . DOI:10.1021/acsnano.7b02967 . [百度学术]
Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, de Leeuw D M . Phys Rev Lett , 2004 . 92 ( 11 ): 116802 DOI:10.1103/PhysRevLett.92.116802 . [百度学术]
Huang J, Sun J, Katz H E . Adv Mater , 2008 . 20 ( 13 ): 2567 - 2572 . DOI:10.1002/adma.200703212 . [百度学术]
Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W . Adv Mater , 2011 . 23 ( 18 ): 2059 - 2063 . DOI:10.1002/adma.201004551 . [百度学术]
Fabiano S, Musumeci C, Chen Z, Scandurra A, Wang H, Loo Y, Facchetti A, Pignataro B . Adv Mater , 2012 . 24 ( 7 ): 951 - 956 . DOI:10.1002/adma.201103800 . [百度学术]
Liu J, Jiang L, Hu W, Liu Y, Zhu D . Sci China Chem , 2019 . 62 ( 3 ): 313 - 330 . DOI:10.1007/s11426-018-9411-5 . [百度学术]
Ji D, Zou Y, Wu K, Yang F, Amirjalayer S, Li L, Huang X, Li T, Hu W, Fuchs H . Adv Funct Mater , 2020 . 30 ( 4 ): 1907153 DOI:10.1002/adfm.201907153 . [百度学术]
Li H, Shi Y, Han G, Liu J, Zhang J, Li C, Yi Y, Li T, Gao X, Di C, Huang J, Che Y, Wang D, Hu W, Liu Y, Jiang L . Angew Chem Int Ed , 2020 . 59 ( 11 ): 4380 - 4384 . DOI:10.1002/anie.201916397 . [百度学术]
Vilan A, Aswal D, Cahen D . Chem Rev , 2017 . 117 ( 5 ): 4248 - 4286 . DOI:10.1021/acs.chemrev.6b00595 . [百度学术]
Halik M, Hirsch A . Adv Mater , 2011 . 23 ( 22-23 ): 2689 - 2695 . DOI:10.1002/adma.201100337 . [百度学术]
Wang G, Kim T, Lee H, Lee T . Phys Rev B , 2007 . 76 ( 20 ): 205320 DOI:10.1103/PhysRevB.76.205320 . [百度学术]
Kim T, Wang G, Lee H, Lee T . Nanotechnology , 2007 . 18 ( 31 ): 315204 DOI:10.1088/0957-4484/18/31/315204 . [百度学术]
Rampi M A, Schueller O J A, Whitesides G M . Appl Phys Lett , 1998 . 72 ( 14 ): 1781 - 1783 . DOI:10.1063/1.121183 . [百度学术]
Chiechi R C, Weiss E A, Dickey M D, Whitesides G M . Angew Chem Int Ed , 2008 . 47 ( 1 ): 142 - 144 . DOI:10.1002/anie.200703642 . [百度学术]
von Wrochem F, Gao D, Scholz F, Nothofer H, Nelles G, Wessels J M . Nat Nanotechnol , 2010 . 5 ( 8 ): 618 - 624 . DOI:10.1038/nnano.2010.119 . [百度学术]
Wang D, Fracasso D, Nurbawono A, Annadata H V, Sangeeth C S S, Yuan L, Nijhuis C A . Adv Mater , 2015 . 27 ( 42 ): 6689 - 6695 . DOI:10.1002/adma.201502968 . [百度学术]
Weiss E A, Chiechi R C, Kaufman G K, Kriebel J K, Li Z, Duati M, Rampi M A, Whitesides G M . J Am Chem Soc , 2007 . 129 ( 14 ): 4336 - 4349 . DOI:10.1021/ja0677261 . [百度学术]
Sangeeth C S S, Demissie A T, Yuan L, Wang T, Frisbie C D, Nijhuis C A . J Am Chem Soc , 2016 . 138 ( 23 ): 7305 - 7314 . DOI:10.1021/jacs.6b02039 . [百度学术]
Akkerman H B, Blom P W M, de Leeuw D M, de Boer B . Nature , 2006 . 441 ( 7089 ): 69 - 72 . DOI:10.1038/nature04699 . [百度学术]
Neuhausen A B, Hosseini A, Sulpizio J A, Chidsey C E D, Goldhaber-Gordon D . ACS Nano , 2012 . 6 ( 11 ): 9920 - 9931 . DOI:10.1021/nn3035183 . [百度学术]
Li T, Hauptmann J R, Wei Z, Petersen S, Bovet N, Vosch T, Nygård J, Hu W, Liu Y, Bjørnholm T, Nørgaard K, Laursen B W . Adv Mater , 2012 . 24 ( 10 ): 1333 - 1339 . DOI:10.1002/adma.201104550 . [百度学术]
Wang G, Kim Y, Choe M, Kim T, Lee T . Adv Mater , 2011 . 23 ( 6 ): 755 DOI:10.1002/adma.201003178 . [百度学术]
Seo S, Min M, Lee J, Lee T, Choi S, Lee H . Angew Chem Int Ed , 2012 . 51 ( 1 ): 108 - 112 . DOI:10.1002/anie.201105895 . [百度学术]
Kühnel M, Overgaard M H, Hels M C, Cui A, Vosch T, Nygård J, Li T, Laursen B W, Nørgaard K . J Phys Chem C , 2018 . 122 ( 43 ): 25102 - 25109 . DOI:10.1021/acs.jpcc.8b08377 . [百度学术]
Zhang Z, Ji D, Mao W, Cui Y, Wang Q, Han L, Zhong H, Wei Z, Zhao Y, Nørgaard K, Li T . Angew Chem Int Ed , 2018 . 57 ( 34 ): 10949 - 10953 . DOI:10.1002/anie.201805998 . [百度学术]
Zhou Y, Zhang Z, Huang X, Li J, Li T . Nano-Micro Lett , 2020 . 12 ( 1 ): 32 DOI:10.1007/s40820-019-0353-2 . [百度学术]
Liu Z, Ren S, Guo X . Topics Curr Chem , 2017 . 375 ( 3 ): 56 DOI:10.1007/s41061-017-0144-5 . [百度学术]
Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T S, Chen W . Chem Soc Rev , 2015 . 44 ( 10 ): 2998 - 3022 . DOI:10.1039/C4CS00377B . [百度学术]
Kudernac T, Katsonis N, Browne W R, Feringa B L . J Mater Chem , 2009 . 19 ( 39 ): 7168 DOI:10.1039/b902009h . [百度学术]
Huang X, Li T . J Mater Chem C , 2020 . 8 ( 3 ): 821 - 848 . DOI:10.1039/C9TC06054E . [百度学术]
Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E, Krause J L . Phys Rev Lett , 2004 . 92 ( 15 ): 158301 DOI:10.1103/PhysRevLett.92.158301 . [百度学术]
Li J, Speyer G, Sankey O F . Phys Rev Lett , 2004 . 93 ( 24 ): 248302 DOI:10.1103/PhysRevLett.93.248302 . [百度学术]
Yasuda S, Nakamura T, Matsumoto M, Shigekawa H . J Am Chem Soc , 2003 . 125 ( 52 ): 16430 - 16433 . DOI:10.1021/ja038233o . [百度学术]
Katsonis N, Kudernac T, Walko M, van der Molen S J, van Wees B J, Feringa B L . Adv Mater , 2006 . 18 ( 11 ): 1397 - 1400 . DOI:10.1002/adma.200600210 . [百度学术]
Dulic D, van der Molen S J, Kudernac T, Jonkman H T, de Jong J, Bowden T N, van Esch J, Feringa B L, van Wees B J . Phys Rev Lett , 2003 . 91 ( 20 ): 207402 DOI:10.1103/PhysRevLett.91.207402 . [百度学术]
Whalley A C, Steigerwald M L, Guo X, Nuckolls C . J Am Chem Soc , 2007 . 129 ( 42 ): 12590 - 12591 . DOI:10.1021/ja073127y . [百度学术]
Kumar A S, Ye T, Takami T, Yu B, Flatt A K, Tour J M, Weiss P S . Nano Lett , 2008 . 8 ( 6 ): 1644 - 1648 . DOI:10.1021/nl080323+ . [百度学术]
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X . Science , 2016 . 352 ( 6292 ): 1443 - 1445 . DOI:10.1126/science.aaf6298 . [百度学术]
Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M, Samorì P . J Am Chem Soc , 2008 . 130 ( 29 ): 9192 - 9193 . DOI:10.1021/ja8018093 . [百度学术]
Ferri V, Elbing M, Pace G, Dickey M D, Zharnikov M, Samorì P, Mayor M, Rampi M A . Angew Chem Int Ed , 2008 . 120 ( 18 ): 3455 - 3457 . DOI:10.1002/ange.200705339 . [百度学术]
Lenfant S, Viero Y, Krzeminski C, Vuillaume D, Demeter D, Dobra I, Oçafrain M, Blanchard P, Roncali J, van Dyck C, Cornil J . J Phys Chem C , 2017 . 121 ( 22 ): 12416 - 12425 . DOI:10.1021/acs.jpcc.7b01240 . [百度学术]
Kumar S, van Herpt J T, Gengler R Y N, Feringa B L, Rudolf P, Chiechi R C . J Am Chem Soc , 2016 . 138 ( 38 ): 12519 - 12526 . DOI:10.1021/jacs.6b06806 . [百度学术]
Kronemeijer A J, Akkerman H B, Kudernac T, van Wees B J, Feringa B L, Blom P W M, de Boer B . Adv Mater , 2008 . 20 ( 8 ): 1467 DOI:10.1002/adma.200800053 . [百度学术]
Kim Y, Wang G, Choe M, Kim J, Lee S, Park S, Kim D, Lee B H, Lee T . Org Electron , 2011 . 12 ( 12 ): 2144 - 2150 . DOI:10.1016/j.orgel.2011.08.017 . [百度学术]
Li T, Jevric M, Hauptmann J R, Hviid R, Wei Z, Wang R, Reeler N E A, Thyrhaug E, Petersen S, Meyer J A S, Bovet N, Vosch T, Nygård J, Qiu X, Hu W, Liu Y, Solomon G C, Kjaergaard H G, Bjørnholm T, Nielsen M B, Laursen B W, Nørgaard K . Adv Mater , 2013 . 25 ( 30 ): 4164 - 4170 . DOI:10.1002/adma.201300607 . [百度学术]
Kim D, Jeong H, Hwang W, Jang Y, Sysoiev D, Scheer E, Huhn T, Min M, Lee H, Lee T . Adv Funct Mater , 2015 . 25 ( 37 ): 5918 - 5923 . DOI:10.1002/adfm.201502312 . [百度学术]
Kim D, Jeong H, Lee H, Hwang W, Wolf J, Scheer E, Huhn T, Jeong H, Lee T . Adv Mater , 2014 . 26 ( 23 ): 3968 - 3973 . DOI:10.1002/adma.201306316 . [百度学术]
Seo S, Min M, Lee S M, Lee H . Nat Commun , 2013 . 4 1920 DOI:10.1038/ncomms2937 . [百度学术]
Klajn R . Pure Appl Chem , 2010 . 82 ( 12 ): 2247 - 2279 . DOI:10.1351/PAC-CON-10-09-04 . [百度学术]
Jaschke M, Schönherr H, Wolf H, Butt H J, Bamberg E, Besocke M K, Ringsdorf H . J Phys Chem , 1996 . 100 ( 6 ): 2290 - 2301 . DOI:10.1021/jp952355o . [百度学术]
Toccafondi C, Picardi G, Ossikovski R . J Phys Chem C , 2016 . 120 ( 32 ): 18209 - 18219 . DOI:10.1021/acs.jpcc.6b03443 . [百度学术]
Akiyama H, Tamada K, Nagasawa J, Abe K, Tamaki T . J Phys Chem B , 2003 . 107 ( 1 ): 130 - 135 . DOI:10.1021/jp026103g . [百度学术]
Han M, Ishikawa D, Honda T, Ito E, Hara M . Chem Commun , 2010 . 46 ( 20 ): 3598 - 3600 . DOI:10.1039/b921801g . [百度学术]
Wagner S, Leyssner F, Kordel C, Zarwell S, Schmidt R, Weinelt M, Ruck-Braun K, Wolf M, Tegeder P . Phys Chem Chem Phys , 2009 . 11 ( 29 ): 6242 - 6248 . DOI:10.1039/b823330f . [百度学术]
Schlimm A, Loew R, Rusch T, Roehricht F, Strunskus T, Tellkamp T, Soennichsen F, Manthe U, Magnussen O, Tuczek F, Herges R . Angew Chem Int Ed , 2019 . 58 ( 20 ): 6574 - 6578 . DOI:10.1002/anie.201814342 . [百度学术]
Baisch B, Raffa D, Jung U, Magnussen O M, Nicolas C, Lacour J, Kubitschke J, Herges R . J Am Chem Soc , 2009 . 131 ( 2 ): 442 - 443 . DOI:10.1021/ja807923f . [百度学术]
Jung U, Kuhn S, Cornelissen U, Tuczek F, Strunskus T, Zaporojtchenko V, Kubitschke J, Herges R, Magnussen O . Langmuir , 2011 . 27 ( 10 ): 5899 - 5908 . DOI:10.1021/la104654p . [百度学术]
Kuhn S, Baisch B, Jung U, Johannsen T, Kubitschke J, Herges R, Magnussen O . Phys Chem Chem Phys , 2010 . 12 ( 17 ): 4481 - 4487 . DOI:10.1039/b922882a . [百度学术]
Jung U, Schütt C, Filinova O, Kubitschke J, Herges R, Magnussen O . J Phys Chem C , 2012 . 116 ( 49 ): 25943 - 25948 . DOI:10.1021/jp310451c . [百度学术]
Wang Q, Ma L, Liu Z, Zhang X, Zhang Z, Shangguan Z, Huang X, Liu Y, Lv J, Zhang H, Chi L, Li T . Sci China Mater , 2018 . 61 ( 10 ): 1345 - 1350 . DOI:10.1007/s40843-018-9270-1 . [百度学术]
Crespi S, Simeth N A, Koeinig B . Nat Rev Chem , 2019 . 3 ( 3 ): 133 - 146 . DOI:10.1038/s41570-019-0074-6 . [百度学术]
Calbo J, Weston C E, White A J P, Rzepa H S, Contreras-García J, Fuchter M J . J Am Chem Soc , 2017 . 139 ( 3 ): 1261 - 1274 . DOI:10.1021/jacs.6b11626 . [百度学术]
Zhang Z, He Y, Zhou Y, Yu C, Han L, Li T . Chem Eur J , 2019 . 25 ( 58 ): 13402 - 13410 . DOI:10.1002/chem.201902897 . [百度学术]
Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平) . Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1246 - 1260 . DOI:10.11777/j.issn1000-3304.2017.17127 . [百度学术]
Zhang Z, Li T . Chinese Chem Lett , 2016 . 27 ( 8 ): 1209 - 1222 . DOI:10.1016/j.cclet.2016.05.031 . [百度学术]
Luo L, Choi S H, Frisbie C D . Chem Mater , 2011 . 23 ( 3 ): 631 - 645 . DOI:10.1021/cm102402t . [百度学术]
Choi S H, Frisbie C D . J Am Chem Soc , 2010 . 132 ( 45 ): 16191 - 16201 . DOI:10.1021/ja1060142 . [百度学术]
Tuccitto N, Ferri V, Cavazzini M, Quici S, Zhavnerko G, Licciardello A, Rampi M A . Nat Mater , 2009 . 8 ( 1 ): 41 - 46 . DOI:10.1038/nmat2332 . [百度学术]
Liu H, Wang N, Zhao J, Guo Y, Yin X, Boey F Y C, Zhang H . ChemPhysChem , 2008 . 9 ( 10 ): 1416 - 1424 . DOI:10.1002/cphc.200800032 . [百度学术]
Sedghi G, Esdaile L J, Anderson H L, Martin S, Bethell D, Higgins S J, Nichols R J . Adv Mater , 2012 . 24 ( 5 ): 653 - 657 . DOI:10.1002/adma.201103109 . [百度学术]
Bruce R C, Wang R, Rawson J, Therien M J, You W . J Am Chem Soc , 2016 . 138 ( 7 ): 2078 - 2081 . DOI:10.1021/jacs.5b10772 . [百度学术]
Kuang G, Chen S, Wang W, Lin T, Chen K, Shang X, Liu P N, Lin N . J Am Chem Soc , 2016 . 138 ( 35 ): 11140 - 11143 . DOI:10.1021/jacs.6b07416 . [百度学术]
Ferreira Q, Bragança A M, Alcácer L, Morgado J . J Phys Chem C , 2014 . 118 ( 13 ): 7229 - 7234 . DOI:10.1021/jp501122n . [百度学术]
Taniguchi M, Nojima Y, Yokota K, Terao J, Sato K, Kambe N, Kawai T . J Am Chem Soc , 2006 . 128 ( 47 ): 15062 - 15063 . DOI:10.1021/ja065806z . [百度学术]
Hnid I, Frath D, Lafolet F, Sun X, Lacroix J . J Am Chem Soc , 2020 . 142 ( 17 ): 7732 - 7736 . DOI:10.1021/jacs.0c01213 . [百度学术]
Hnid I, Grempka A, Khettabi A, Sun X, Lacroix J C, Lafolet F, Cobo S . J Phys Chem C , 2020 . 124 ( 48 ): 26304 - 26309 . DOI:10.1021/acs.jpcc.0c08233 . [百度学术]
Mccarley R L, Willicut R J . J Am Chem Soc , 1998 . 120 ( 36 ): 9296 - 9304 . DOI:10.1021/ja981677d . [百度学术]
Kuwabata S, Fukuzaki R, Nishizawa M, Martin C R, Yoneyama H . Langmuir , 1999 . 15 ( 20 ): 6807 - 6812 . DOI:10.1021/la981719b . [百度学术]
Oçafrain M, Tran T K, Blanchard P, Lenfant S, Godey S, Vuillaume D, Roncali J . Adv Funct Mater , 2008 . 18 ( 15 ): 2163 - 2171 . DOI:10.1002/adfm.200800304 . [百度学术]
Vercelli B, Zotti G, Berlin A, Grimoldi S . Chem Mater , 2006 . 18 ( 16 ): 3754 - 3763 . DOI:10.1021/cm060802e . [百度学术]
Gao Z, Kok S S, Hardy S O C . Synthetic Met , 1995 . 75 ( 1 ): 5 - 10 . DOI:10.1016/0379-6779(95)03384-V . [百度学术]
Gao Z, Siow K S . Electrochim Acta , 1997 . 42 ( 2 ): 315 - 321 . DOI:10.1016/0013-4686(96)00187-9 . [百度学术]
Yang D, Zi M, Chen B, Gao Z . J Electroanal Chem , 1999 . 470 ( 2 ): 114 - 119 . DOI:10.1016/S0022-0728(99)00216-8 . [百度学术]
Shimoyama Y . Thin Solid Films , 2004 . 464-465 403 - 407 . DOI:10.1016/j.tsf.2004.06.003 . [百度学术]
Wang Z, Dong H, Li T, Hviid R, Zou Y, Wei Z, Fu X, Wang E, Zhen Y, Nørgaard K, Laursen B W, Hu W . Nat Commun , 2015 . 6 7478 DOI:10.1038/ncomms8478 . [百度学术]
365
浏览量
994
下载量
1
CSCD
相关文章
相关作者
相关机构