浏览全部资源
扫码关注微信
浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027
E-mail: renkf@zju.edu.cn
jijian@zju.edu.cn
纸质出版日期:2021-08-20,
网络出版日期:2021-05-11,
收稿日期:2021-01-27,
修回日期:2021-02-22,
扫 描 看 全 文
黄威嫔,黄丹妮,任科峰等.调控非共价相互作用实现聚电解质膜内多孔形成的研究[J].高分子学报,2021,52(08):978-986.
Huang Wei-pin,Huang Dan-ni,Ren Ke-feng,et al.Pore-formation through Controlling Noncovalent Interactions in Polyelectrolyte Film[J].ACTA POLYMERICA SINICA,2021,52(08):978-986.
黄威嫔,黄丹妮,任科峰等.调控非共价相互作用实现聚电解质膜内多孔形成的研究[J].高分子学报,2021,52(08):978-986. DOI: 10.11777/j.issn1000-3304.2021.21029.
Huang Wei-pin,Huang Dan-ni,Ren Ke-feng,et al.Pore-formation through Controlling Noncovalent Interactions in Polyelectrolyte Film[J].ACTA POLYMERICA SINICA,2021,52(08):978-986. DOI: 10.11777/j.issn1000-3304.2021.21029.
静电层状组装聚电解质膜主要由静电作用为驱动力,带有相反电荷的聚电解质在基底表面进行交替沉积制得,其结构可以通过膜内分子运动性的改变来调控. 本研究在静电作用基础上,通过在聚丙烯酸(PAA)上接枝偶氮苯基团(Azo),得到含有2种非共价相互作用的聚乙烯亚胺/偶氮苯修饰的聚丙烯酸(PEI/PAA-Azo)膜. 利用光照和弱酸溶液对2种相互作用进行顺序调控,实现在PEI/PAA-Azo膜内区域、可逆地构建微孔结构. 进一步地,利用该体系展开了区域负载功能分子以及局部调控生物膜的形成的研究. 本研究为探究聚电解质膜内分子运动性对膜结构和动态性的影响提供了一种可行的策略,并且拓展了聚电解质膜的应用前景.
Layer-by-layer assembly (LbL) polyelectrolyte film driven by electrostatic interaction is fabricated from alternate deposition
which has garnered broad interest all over the world in the fields of anti-bacteria
anti-fouling
separation
sensor
etc
. The mobility of polymeric chains plays a vital role in the dynamic and structural control of polyelectrolyte film. Owing to the intrinsic sensitivity of electrostatic interaction for the external environment
the mobility of polymeric chains could be adjusted
and then their structures could be dynamically tuned. However
few studies have illuminated the specific role of polyanion or polycation in these procedures. Our proposal is based on a polyelectrolyte film with azobenzene (Azo) interaction
whose structure could be dynamically and reversibly controlled under the action of ultraviolet (UV) irradiation
acid treatment
and water plasticization. Herein
azobenzene were grafted onto poly(acrylic acid) (PAA) through amidation reaction. The poly(ethyleneimine)/PAA-Azo (PEI/PAA-Azo) film
which contained two kinds of noncovalent interactions
was fabricated by the LbL technique. Porous structures were constructed in PEI/PAA-Azo film after UV irradiation in a bath of the acid solution
while the film kept solid without UV irradiation after acid treatment. Patterned porous PEI/PAA-Azo film was obtained after regional UV irradiation and acid treatment. Thanks to the reversibility of azobenzene interaction and electrostatic interaction
the patterned porous structures were constructed reversibly. Furthermore
CdSe/ZnS quantum dots were spatially encapsulated into the film to develop a pattern that was visible in UV light but invisible in visible light. Through lubricate-infusion in porous regions
a patterned anti-fouling surface was fabricated
where patterned biofilm was cultured successfully. This study presented a feasible strategy for realizing the importance of polyanion mobility for the structure and dynamics of polyelectrolyte film
and it opened a broad window for the applications (such as information storage
information security
and bacterial bioengineering) of polyelectrolyte film.
静电层状组装聚电解质膜动态结构偶氮苯微孔结构
Layer-by-layer assemblyPolyelectrolyte filmDynamic structuresAzobenzenePorous structures
Decher G. Science, 1997, 277(5330): 1232-1237. doi:10.1126/science.277.5330.1232http://dx.doi.org/10.1126/science.277.5330.1232
Richardson J J, Bjornmalm M, Caruso F. Science, 2015, 348(6233): aaa2491. doi:10.1126/science.aaa2491http://dx.doi.org/10.1126/science.aaa2491
Lu Y, Qin Z, Wang N, An Q F, Guo H. J Membr Sci, 2020: 118827. doi:10.20944/preprints202002.0307.v1http://dx.doi.org/10.20944/preprints202002.0307.v1
Wong S Y, Han L, Timachova K, Veselinovic J, Hyder M N, Ortiz C, Klibanov A M, Hammond P T. Biomacromolecules, 2012, 13(3): 719-726. doi:10.1021/bm201637ehttp://dx.doi.org/10.1021/bm201637e
Guthrie K M, Agarwal A, Tackes D S, Johnson K W, Abbott N L, Murphy C J, Czuprynski C J, Kierski P R, Schurr M J, McAnulty J F. Ann Surg, 2012, 256(2): 371-377. doi:10.1097/sla.0b013e318256ff99http://dx.doi.org/10.1097/sla.0b013e318256ff99
Martins A F, Vlcek J, Wigmosta T, Hedayati M, Reynolds M M, Popat K C, Kipper M J. Appl Surf Sci, 2020, 502: 144282. doi:10.1016/j.apsusc.2019.144282http://dx.doi.org/10.1016/j.apsusc.2019.144282
Lei Wenxi(雷文茜), Ren Kefeng(任科峰), Chen Xiachao (陈夏超), Hu Mi(胡米), Ji Jian(计剑). Acta Polymerica Sinica (高分子学报), 2017, (5): 744-751. doi:10.11777/j.issn1000-3304.2017.16260http://dx.doi.org/10.11777/j.issn1000-3304.2017.16260
Chen Dongdong(陈栋栋), Ma Ying(马莹), Sun Junqi(孙俊奇). Acta Polymerica Sinica (高分子学报), 2012, (10): 1047-1054. doi:10.3724/SP.J.1105.2012.12125http://dx.doi.org/10.3724/SP.J.1105.2012.12125
Mendelsohn J D, Barrett C J, Chan V V, Pal A J, Mayes A M, Rubner M F. Langmuir, 2000, 16(11): 5017-5023. doi:10.1021/la000075ghttp://dx.doi.org/10.1021/la000075g
Ghostine R A, Markarian M Z, Schlenoff J B. J Am Chem Soc, 2013, 135(20): 7636-7646. doi:10.1021/ja401318mhttp://dx.doi.org/10.1021/ja401318m
Wang X, Kim H J, Xu P, Matsumoto A, Kaplan D L. Langmuir, 2005, 21(24): 11335-11341. doi:10.1021/la051862mhttp://dx.doi.org/10.1021/la051862m
R V K. Phys Chem Chem Phys, 2006, 8(43): 5012-5033. doi:10.1039/b607760ahttp://dx.doi.org/10.1039/b607760a
Gu Y, Huang X, Wiener C G, Vogt B D, Zacharia N S. ACS Appl Mater Interfaces, 2015, 7(3): 1848-1858. doi:10.1021/am507573mhttp://dx.doi.org/10.1021/am507573m
Zhang L, Zheng M, Liu X, Sun J. Langmuir, 2011, 27(4): 1346-1352. doi:10.1021/la103953nhttp://dx.doi.org/10.1021/la103953n
Chen X C, Ren K F, Chen J Y, Wang J, Zhang H, Ji J. Phys Chem Chem Phys, 2016, 18(45): 31168-31174. doi:10.1039/c6cp05419fhttp://dx.doi.org/10.1039/c6cp05419f
Chen X C, Ren K F, Zhang J H, Li D D, Zhao E, Zhao Z J, Xu Z K, Ji J. Adv Funct Mater, 2015, 25(48): 7470-7477. doi:10.1002/adfm.201503258http://dx.doi.org/10.1002/adfm.201503258
Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. Nat Commun, 2015, 6: 10310. doi:10.1038/ncomms10310http://dx.doi.org/10.1038/ncomms10310
Fares H M, Schlenoff J B. J Am Chem Soc, 2017, 139(41): 14656-14667. doi:10.1021/jacs.7b07905http://dx.doi.org/10.1021/jacs.7b07905
Yu J, Meharg B M, Lee I. Polymer, 2017, 109: 297-306. doi:10.1016/j.polymer.2016.12.055http://dx.doi.org/10.1016/j.polymer.2016.12.055
Huang W P, Chen X C, Hu M, Wang J, Qian H L, Hu D F, Dong R L, Xu S Y, Ren K F, Ji J. ACS Appl Mater Interfaces, 2020, 12(37): 42081-42088. doi:10.1021/acsami.0c09580http://dx.doi.org/10.1021/acsami.0c09580
Howell C, Vu T L, Johnson C P, Hou X, Ahanotu O, Alvarenga J, Leslie D C, Uzun O, Waterhouse A, Kim P, Super M, Aizenberg M, Ingber D E, Aizenberg J. Chem Mater, 2015, 27(5): 1792-1800. doi:10.1021/cm504652ghttp://dx.doi.org/10.1021/cm504652g
Wang M, Zhang X, Li L, Wang J, Wang J, Ma J, Yuan Z, Lincoln S F, Guo X. Macromol Mater Eng, 2016, 301(2): 191-198. doi:10.1002/mame.201500295http://dx.doi.org/10.1002/mame.201500295
Xu Tianyu(徐天宇), Feng Yiyu(冯奕钰), Feng Wei(封伟). Acta Polymerica Sinica (高分子学报), 2021, 52(1): 78-83. doi:10.11777/j.issn1000-3304.2020.20146http://dx.doi.org/10.11777/j.issn1000-3304.2020.20146
Chen X C, Huang W P, Ren K F, Ji J. ACS Nano, 2018, 12(8): 8686-8696. doi:10.1021/acsnano.8b04656http://dx.doi.org/10.1021/acsnano.8b04656
Akiyama H, Tamaoki N. Macromolecules, 2007, 40(14): 5129-5132. doi:10.1021/ma070628vhttp://dx.doi.org/10.1021/ma070628v
Pieroni O, Fissi A, Angelini N, Lenci F. Acc Chem Res, 2001, 34(1): 9-17. doi:10.1021/ar990141+http://dx.doi.org/10.1021/ar990141+
Peng Yating(彭亚婷), Wang Tao(王涛), Li Hang(李杭), Yang Rong(杨荣), Li Jinchun(李锦春). Acta Polymerica Sinica (高分子学报), 2020, 51(3): 267-276. doi:10.11777/j.issn1000-3304.2019.19177http://dx.doi.org/10.11777/j.issn1000-3304.2019.19177
Wei Zhenyao(魏振耀), Deng Yonghong(邓永红), Yu Haifeng(于海峰), Qiu Xueqing(邱学青). Acta Polymerica Sinica (高分子学报), 2016, (6): 742-749. doi:10.11777/j.issn1000-3304.2016.15307http://dx.doi.org/10.11777/j.issn1000-3304.2016.15307
Chu Z, Han Y, Bian T, De S, Kral P, Klajn R. J Am Chem Soc, 2019, 141(5): 1949-1960. doi:10.1021/jacs.8b09638http://dx.doi.org/10.1021/jacs.8b09638
Wang H, Han Y, Yuan W, Wu M, Chen Y. Chem Asian J, 2018, 13(9): 1173-1179. doi:10.1002/asia.201800019http://dx.doi.org/10.1002/asia.201800019
Chen X C, Ren K F, Lei W X, Zhang J H, Martins M C L, Barbosa M A, Ji J. ACS Appl Mater Interfaces, 2016, 8(7): 4309-4313. doi:10.1021/acsami.5b11602http://dx.doi.org/10.1021/acsami.5b11602
Chen X C, Huang W P, Ferreira L, Ren K F, Ji J. Adv Mater Interfaces, 2019, 6(17): 1900702. doi:10.1002/admi.201900702http://dx.doi.org/10.1002/admi.201900702
Pavlukhina S, Sukhishvili S. Adv Drug Deliv Rev, 2011, 63(9): 822-836. doi:10.1016/j.addr.2011.03.017http://dx.doi.org/10.1016/j.addr.2011.03.017
Zhang W, Zhao Q, Yuan J. Angew Chem Int Ed, 2018, 57(23): 6754-6773. doi:10.1002/anie.201710272http://dx.doi.org/10.1002/anie.201710272
Almodovar J, Guillot R, Monge C, Vollaire J, Selimovic S, Coll J L, Khademhosseini A, Picart C. Biomaterials, 2014, 35(13): 3975-3985
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构