浏览全部资源
扫码关注微信
大连理工大学化工学院 大连 116023
E-mail: nzheng@dlut.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-08-06,
收稿日期:2021-01-27,
扫 描 看 全 文
王维虎,何俊男,郑玉斌等.铜催化磷酰基叠氮参与的三组分聚合制备聚膦酰基脒[J].高分子学报,2021,52(09):1129-1137.
Wang Wei-hu,He Jun-nan,Zheng Yu-bin,et al.Copper-catalyzed, Three-component Polymerization for the Synthesis of Polyphosphonylamidines[J].ACTA POLYMERICA SINICA,2021,52(09):1129-1137.
王维虎,何俊男,郑玉斌等.铜催化磷酰基叠氮参与的三组分聚合制备聚膦酰基脒[J].高分子学报,2021,52(09):1129-1137. DOI: 10.11777/j.issn1000-3304.2021.21031.
Wang Wei-hu,He Jun-nan,Zheng Yu-bin,et al.Copper-catalyzed, Three-component Polymerization for the Synthesis of Polyphosphonylamidines[J].ACTA POLYMERICA SINICA,2021,52(09):1129-1137. DOI: 10.11777/j.issn1000-3304.2021.21031.
为进一步发展高效的多组分聚合方法,构建有应用前景的高分子材料,本文报道了一种基于一价铜催化的,以叠氮磷酸二苯酯(DPPA)、二炔和二胺为单体的多组分聚合方法,在
N
N
-二甲基甲酰胺(DMF)中室温反应4 h,制备了一系列聚膦酰基脒,产率高达90%,重均分子量高达54000 g/mol,仅生成氮气为副产物. DPPA参与聚合具有后修饰的潜在应用,克服传统磺酰基叠氮后修饰困难的缺点. 以含缩硫酮的二胺为聚合单体可制备具有特殊结构、活性氧敏感的聚膦酰基脒,在活性氧刺激下实现聚合物的降解. 通过核磁共振波谱,凝胶色谱及基质辅助激光解吸飞行时间质谱确定聚合物结构、分子量及重复单元,并研究了炔类单体的刚柔性和胺类单体的位阻效应对聚合反应的影响. 该聚合方法为多组分聚合提供了一种新的途径,拓宽了高分子材料的应用范围,为下阶段探索聚脒材料的应用奠定基础.
Multicomponent polymerization (MCP) could efficiently synthesize multi-functional polymers with structural diversity. In order to further expand MCP and construct the polymers with potential application
in this work
we report an efficient Cu-catalyzed MCP technique that enables the synthesis polyphosphonylamidines of high molecular weight (up to 54000 g/mol) and high yield (up to 90%) from monomers of diphenyl phosphate azide (DPPA)
diynes and diamines
in
N
N
-dimethylformamide (DMF) at room temperature for 4 h. The obtained polymers have more potential in application after post-functionalization
compared with the polymers prepared by the sulfonyl azide. Reactive oxygen species responsive polyphosphonylamidines with special construction are prepared by using thioketal diamine as polymeric monomer
and these polymers exhibit excellent degradation property by ROS-triggered. The structure
molecular weight and repeat units of all synthetic polymers are determined by nuclear magnetic resonance (NMR)
gel permeation chromatography (GPC) and MALDI-TOF. The effects of rigidity and flexibility of diynes and steric hindrance of diamines on the MCP are investigated. This polymerization method provides a powerful approach for MCP to synthesize functional polymers and broadens the application fields of polymer science.
多组分聚合聚膦酰基脒磷酰基叠氮活性氧可降解聚合物
Multicomponent polymerizationPolyphosphonylamidineDiphenyl phosphate azideROS-degradable polymer
Liu Lihua(刘丽华). Chemical Intermediate(化工中间体), 2012, (2): 1-5. doi:10.1109/nces.2012.6543587http://dx.doi.org/10.1109/nces.2012.6543587
Zheng Dandan(郑担担), Zhu Yifeng(祝一锋), Tang Huadong(唐华东). China Plastics Industry(塑料工业), 2017, (7): 1-5. doi:10.3969/j.issn.1005-5770.2017.07.001http://dx.doi.org/10.3969/j.issn.1005-5770.2017.07.001
Tao Lei(陶磊), Zhao Yuan(赵原), Yang Bin(杨斌). Acta Polymerica Sinica(高分子学报), 2016, (11): 1482-1494. doi:10.11777/j.issn1000-3304.2016.16218http://dx.doi.org/10.11777/j.issn1000-3304.2016.16218
Wang Y Z, Deng X X, Li L, Li Z L, Du F S, Li Z C. Polym Chem, 2013, 4: 444-448. doi:10.1039/c2py20927fhttp://dx.doi.org/10.1039/c2py20927f
Pierre S, Philippe L. ACS Macro Lett, 2019, 8: 427-434. doi:10.1021/acsmacrolett.9b00182http://dx.doi.org/10.1021/acsmacrolett.9b00182
Zheng N, Daniel Kwesi Cudjoe. Macromol Rapid Commun, 2020, 42(6): 202000464. doi:10.1002/marc.202000464http://dx.doi.org/10.1002/marc.202000464
Dong L C, Fu W Q, Liu P, Shi J B, Tong B, Cai Z X, Zhi J G, Dong Y P. Macromolecules, 2020, 53: 1054-1062. doi:10.1021/acs.macromol.9b02192http://dx.doi.org/10.1021/acs.macromol.9b02192
Zhang Y L, Zhao Y, Xia S, Wei Y. Macromol Rapid Commun, 2020, 41: 1900533. doi:10.1002/marc.201900533http://dx.doi.org/10.1002/marc.201900533
Huang Die(黄蝶), Qin Anjun(秦安军), Tang Benzhong(唐本忠). Acta Polymerica Sinica(高分子学报), 2017, (2): 178-199. doi:10.11777/j.issn1000-3304.2017.16275http://dx.doi.org/10.11777/j.issn1000-3304.2017.16275
Kreye O, Toth T, Michael A R M. J Am Chem Soc, 2011, 133: 1790-1792. doi:10.1021/ja1113003http://dx.doi.org/10.1021/ja1113003
Sehlinger A, Dannecker P, Kreye O, Michael A R M. Macromolecules, 2014, 47: 2774-2783. doi:10.1021/ma500504whttp://dx.doi.org/10.1021/ma500504w
Zhao Y, Yu Y, Zhang Y, Wang X, Yang B, Zhang Y, Zhang Q, Fu C, Wei Y, Tao L. Polym Chem, 2015, 6: 4940-4945. doi:10.1039/c5py00684hhttp://dx.doi.org/10.1039/c5py00684h
Zheng C, Deng H, Zhao Z, Qin A J, Hu R R, Tang B Z. Macromolecules, 2015, 48: 1941-1951. doi:10.1021/acs.macromol.5b00175http://dx.doi.org/10.1021/acs.macromol.5b00175
Chan C Y K, Tseng N W, Lam J W Y, Liu J Z, Kwok R T K, Tang B Z. Macromolecules, 2013, 46: 3246-3256. doi:10.1021/ma4005346http://dx.doi.org/10.1021/ma4005346
Hu R R, Li W Z, Tang B Z. Macromol Chem Phys, 2016, 217(2): 213-224. doi:10.1002/macp.201500291http://dx.doi.org/10.1002/macp.201500291
Song W Z, Lei M, Shen Y. Cai S Y, Lu W, Lu P, Wang Y G. Adv Synth Catal, 2010, 352: 2432-2436. doi:10.1002/adsc.201000400http://dx.doi.org/10.1002/adsc.201000400
Song W Z , Lu W, Wang J. J Org Chem, 2010, 75: 3481-3483. doi:10.1021/jo100354hhttp://dx.doi.org/10.1021/jo100354h
Imhyuck B, Hoon H, Sukbok C. J Am Chem Soc, 2005, 127: 2038-2039. doi:10.1021/ja0432968http://dx.doi.org/10.1021/ja0432968
Eun J Y, Marten A, Sukbok C. J Org Chem, 2008, 73: 5520-5528. doi:10.1021/jo800733phttp://dx.doi.org/10.1021/jo800733p
In-Hwan L, Hyunseok K, Tae-Lim C. J Am Chem Soc, 2013, 135: 3760-3763. doi:10.1021/ja312592ehttp://dx.doi.org/10.1021/ja312592e
Hyunseok K, Tae-Lim C. ACS Macro Lett, 2014, 3: 791-794. doi:10.1021/mz5003239http://dx.doi.org/10.1021/mz5003239
Xu L G, Hu R R, Tang B Z. Macromolecules, 2017, 50: 6043-6053. doi:10.1021/acs.macromol.7b01096http://dx.doi.org/10.1021/acs.macromol.7b01096
Xu L G, Kou Yang, Hu R R, Tang B Z. Synlett, 2018, 29: 2523-2528. doi:10.1055/s-0037-1610275http://dx.doi.org/10.1055/s-0037-1610275
Xu Liguo(徐立国). Alkynes and Sulfonyl Azides-based Multicomponent Polymerizations(基于炔和磺酰叠氮的多组分聚合). Doctoral Dissertation of South China University of Technology(华南理工大学博士论文), 2018
Zhang H Y, Xu L G, Hu R R, Tang B Z. Macromolecules, 2020, 53: 10366-10374. doi:10.1021/acs.macromol.0c02139http://dx.doi.org/10.1021/acs.macromol.0c02139
He J N, Zheng N, Xie D, Zheng Y B, Song W Z. Polym Chem, 2020, 11: 1198-1210. doi:10.1039/c9py01576khttp://dx.doi.org/10.1039/c9py01576k
Seok H K, Doo Y J, Sukbok C. J Org Chem, 2007, 72: 9769-9771. doi:10.1021/jo7016247http://dx.doi.org/10.1021/jo7016247
Myung Y L Myung H K, Sung-Youn C. Bioorg Med Chem Lett, 2010, 20: 541-545
0
浏览量
51
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构