浏览全部资源
扫码关注微信
大连理工大学化工学院 精细化工国家重点实验室 辽宁省高性能树脂工程技术研究中心 辽宁省高分子科学与工程重点实验室 大连 116024
E-mail: zhangshh@dlut.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-06-24,
收稿日期:2021-01-27,
修回日期:2021-03-04,
扫 描 看 全 文
刘乾,王昭琪,杨晓庆等.氮杂环单体的分子结构对共聚芳醚酮酮性能的影响[J].高分子学报,2021,52(09):1184-1191.
Liu Qian,Wang Zhao-qi,Yang Xiao-qing,et al.The Effects of Structure of N-heterocyclic Monomers on the Performance of Copoly(aryl ether ketone ketone)s[J].ACTA POLYMERICA SINICA,2021,52(09):1184-1191.
刘乾,王昭琪,杨晓庆等.氮杂环单体的分子结构对共聚芳醚酮酮性能的影响[J].高分子学报,2021,52(09):1184-1191. DOI: 10.11777/j.issn1000-3304.2021.21032.
Liu Qian,Wang Zhao-qi,Yang Xiao-qing,et al.The Effects of Structure of N-heterocyclic Monomers on the Performance of Copoly(aryl ether ketone ketone)s[J].ACTA POLYMERICA SINICA,2021,52(09):1184-1191. DOI: 10.11777/j.issn1000-3304.2021.21032.
合成4
4'-二苯基-7
7'-双(2
2'
3
3')二氮杂萘(1
1')酮(7
7-DBD)与4
4'-二苯基-6
7'-双(2
2'
3
3')二氮杂萘(1
1')酮(6
7-DBD)2种杂环单体,探究2种单体和4-(4-羟基苯基)-2
3-二氮杂萘酮与1
4-二(4-氟苯甲酰基)苯的共聚行为,得到2种侧苯基位置不同的氮杂环聚芳醚酮酮P-CDs与P-TDs. 两者的特性黏度介于0.5~1.1 dL/g,P-CDs的特性黏度更高,制备更容易. P-CDs的玻璃化转变温度介于254~296 ℃,250 ℃的储能模量保持率高达67%,均高于相同共聚组成的P-TDs. 2种聚合物可溶于
N
-甲基吡咯烷酮与1
1
2
2-四氯乙烷等有机溶剂中;拉伸模量介于1.56~1.78 GPa,拉伸强度介于50.1~102.9 MPa,断裂伸长率介于11.0%~18.1%,绝缘性基本一致. P-CDs的耐热性、溶解性、机械性能均优于P-TDs. 故调整主链上侧基分布方式可以明显改变聚合物的耐热性、机械性能、溶解性和可制备性,为制备耐热等级更高且可溶解的高性能聚合物提供参考.
4
4′-Diphenyl-6
7′-biphthalazin-1
1′(2H
2′H)-dione (6
7-DBD) and 4
4′-diphenyl-7
7′-biphthalazin 1
1′ (2H
2′H)-dione (7
7-DBD) were synthesized. The copolymerization behaviors of two DBDs and 4-(4-hydroxyphenyl)-2
3-phthalazin-1-one with 1
4-bis(4-fluorobenzoyl)benzene were investigated
separately.
N
-heterocyclic copoly(aryl ether ketone ketone)s with different locations of side-phenyl groups (P-CDs and P-TDs) were obtained. The intrinsic viscosities (
η
int
) of the copolymers are in the range of 0.5-1.1 dL/g. P-CDs perform the easier preparation process and higher
η
int
than P-TDs. The glass transition temperature of P-CDs ranges from 254 ℃ to 296 ℃
and the retention rate of storage modulus is up to 67% at 250 ℃
which is higher than that of P-TDs with the similar polymerization composition. Both copolymers are soluble in commom solvent
such as
N
-methylpyrrolidone and 1
1
2
2-tetrachloroethane. The tensile modulus is in the range of 1.56-1.78 GPa
the tensile strength is in the range of 50.1-102.9 MPa
the elongation at break is in the range of 11.0%-18.1%
and the insulation properties are little short of the same. In summary
P-CDs exhibit better heat resistance
solubility
and mechanical proteties than P-TDs . It can be found that adjusting the distribution of side phenyl in main chains can significantly affect the thermal stability
mechanical property
solubility
and preparability of the polymer
which provides an attempt direction for the preparation of high-performance polymers with high heat resistance and solubility.
分子结构聚芳醚双二氮杂萘酮溶解性耐热性
Molecular structurePoly(aryl ether ketone ketone)sPhthalazinioneSolubilityThermo-resistance
Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Polymer Materials Science & Engineering (高分子材料科学与工程), 2014, 30(2): 145-150
Park S A, Jeon H, Kim H, Shin S H, Choy S, Hwang D S, Koo J M, Jegal J, Hwang S Y, Park J, Oh D X. Nat Commun, 2019, 10: 2601. doi:10.1038/s41467-019-10582-6http://dx.doi.org/10.1038/s41467-019-10582-6
Handa N V, Li S, Gerbec J A, Sumitani N, Hawker C J, Klinger D. J Am Chem Soc, 2016, 138(20): 6400-6403. doi:10.1021/jacs.6b03381http://dx.doi.org/10.1021/jacs.6b03381
Zong Lishuai(宗立率), Liu Cheng(刘程), He Qinzheng(何钦政), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica (高分子学报), 2014, (11): 1539-1546. doi:10.11777/j.issn1000-3304.2014.14091http://dx.doi.org/10.11777/j.issn1000-3304.2014.14091
Zhao Z, Gu Y, Chao D, Liu X. Eur Polym J, 2019, 116: 336-341. doi:10.1016/j.eurpolymj.2019.04.026http://dx.doi.org/10.1016/j.eurpolymj.2019.04.026
Qi D, Zhao C, Zhang L, Li X, Li G, Na H. Polym Chem, 2015, 6(28): 5125-5132. doi:10.1039/c5py00768bhttp://dx.doi.org/10.1039/c5py00768b
Cheng H, Xu J, Ma L, Xu L, Liu B, Wang Z, Zhang H. J Power Sources, 2014, 260: 307-316. doi:10.1016/j.jpowsour.2014.03.023http://dx.doi.org/10.1016/j.jpowsour.2014.03.023
Liu J, Chen G, Guo J, Mushtaq N, Fang X. Polymer, 2015, 70: 30-37. doi:10.1016/j.polymer.2015.05.058http://dx.doi.org/10.1016/j.polymer.2015.05.058
Zhu L, Hu N, Yu L M, Huang Z Z, Sheng S R. High Perform Polym, 2017, 29(3): 341-348. doi:10.1177/0954008316644660http://dx.doi.org/10.1177/0954008316644660
Bao Feng(鲍锋), Liu Cheng(刘程), Song Yuanyuan(宋媛媛), Wu Zuoqiang(邬祚强), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica (高分子学报), 2018, (6): 692-699. doi:10.11777/j.issn1000-3304.2017.17265http://dx.doi.org/10.11777/j.issn1000-3304.2017.17265
Zong L, Liu C, Liu R, Wang J, Jian X. Polym Bull, 2014, 71(10): 2641-2660. doi:10.1007/s00289-014-1216-0http://dx.doi.org/10.1007/s00289-014-1216-0
Shi Wanling(石婉玲), Zhang Shouhai(张守海), Bu Xiaoman(步肖曼), Liu Qian(刘乾), Chen Yuning(陈宇宁),Xue Rendong(薛仁东), Jian Xigao(蹇锡高). Polymer Materials Science & Engineering (高分子材料科学与工程), 2019, 35(3): 32-36. doi:10.1016/j.msec.2020.110833http://dx.doi.org/10.1016/j.msec.2020.110833
Liu Qian(刘乾), Yang Yuxue(杨玉雪), Zhang Shouhai(张守海), Xue Rendong(薛仁东), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2018, (5): 581-587. doi:10.11777/j.issn1000-3004.2017.17211http://dx.doi.org/10.11777/j.issn1000-3004.2017.17211
Bao F, Song Y, Liu Q, Song C, Liu C, Wang J, Jian X, Xiao J. Polym Degrad Stabil, 2019, 161: 309-318. doi:10.1016/j.polymdegradstab.2018.12.008http://dx.doi.org/10.1016/j.polymdegradstab.2018.12.008
Liu Q, Zhang S, Wang Z, Li N, Chen Y, Xu P, Jian X. Eur Polym J, 2021, 143: 110205. doi:10.1016/j.eurpolymj.2020.110205http://dx.doi.org/10.1016/j.eurpolymj.2020.110205
Bao F, Zhang F, Wang C, Song Y, Li N, Wang J, Jian X. Polymers, 2019, 11(5): 803. doi:10.3390/polym11050803http://dx.doi.org/10.3390/polym11050803
Li N, Wu Z, Yang X, Wang C, Zong L, Pan Y, Wang J, Jian X. J Mater Sci, 2018, 53(24): 16303-16317. doi:10.1007/s10853-018-2704-7http://dx.doi.org/10.1007/s10853-018-2704-7
Li N, Yang X, Bao F, Pan Y, Wang C, Chen B, Zong L, Liu C, Wang J, Jian X. Polymers, 2019, 11(2): 237. doi:10.3390/polym11020237http://dx.doi.org/10.3390/polym11020237
Han J, Yin H, Liu C, Wang J, Jian X. Polymer, 2016, 101: 241-256. doi:10.1016/j.polymer.2016.08.090http://dx.doi.org/10.1016/j.polymer.2016.08.090
Han J, Yin H, Liu C, Wang J, Jian X. RSC Adv, 2016, 6(8): 6772-6781. doi:10.1039/c5ra21246dhttp://dx.doi.org/10.1039/c5ra21246d
Yuan K, Liu C, Zhang S, Jiang L, Liu C, Yu G, Wang J, Yu G, Wang J, Jian X. J Membr Sci, 2017, 541:403-412. doi:10.1016/j.memsci.2017.07.021http://dx.doi.org/10.1016/j.memsci.2017.07.021
Chen L, Zhang S, Chen Y, Jian X. J Power Sources, 2017, 355: 23-30. doi:10.1016/j.jpowsour.2017.04.045http://dx.doi.org/10.1016/j.jpowsour.2017.04.045
Chen Y, Zhang S, Liu Q, Jian X. RSC Adv, 2019, 9(45): 26097-26108. doi:10.1039/c9ra05111bhttp://dx.doi.org/10.1039/c9ra05111b
Zhang S, Zhang B, Zhao G, Jian X. J Mater Chem A, 2014, 2(9): 3083-3091. doi:10.1039/c3ta14503dhttp://dx.doi.org/10.1039/c3ta14503d
Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Polymer, 2020, 198: 122525. doi:10.1016/j.polymer.2020.122525http://dx.doi.org/10.1016/j.polymer.2020.122525
0
浏览量
54
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构