浏览全部资源
扫码关注微信
华南理工大学材料科学与工程学院 广东省高性能与功能高分子材料重点实验室 广州 510641
E-mail: msycyuan@scut.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-06-24,
收稿日期:2021-01-28,
修回日期:2021-03-05,
扫 描 看 全 文
麻乐,袁彦超,刘诗博等.可循环回收利用的本征导热聚六氢三嗪树脂研究[J].高分子学报,2021,52(09):1156-1164.
Ma Le,Yuan Yan-chao,Liu Shi-bo,et al.Study on a Polyhexahydrotriazine Resin with Recyclability and Intrinsic Thermal Conductivity[J].ACTA POLYMERICA SINICA,2021,52(09):1156-1164.
麻乐,袁彦超,刘诗博等.可循环回收利用的本征导热聚六氢三嗪树脂研究[J].高分子学报,2021,52(09):1156-1164. DOI: 10.11777/j.issn1000-3304.2021.21035.
Ma Le,Yuan Yan-chao,Liu Shi-bo,et al.Study on a Polyhexahydrotriazine Resin with Recyclability and Intrinsic Thermal Conductivity[J].ACTA POLYMERICA SINICA,2021,52(09):1156-1164. DOI: 10.11777/j.issn1000-3304.2021.21035.
采用多聚甲醛(PFA)和含有芳香酰胺特殊结构的4
4
'
-二氨基苯酰替苯胺(DABA)为原料,通过利用分子链间氢键强相互作用向树脂固化网络中引入局域微观有序结构增大声子传播自由程,合成一种新型本征导热聚六氢三嗪热固性树脂(DABA-PHT). 通过对树脂预聚过程和机理、固化工艺、导热性能、降解性能及循环回收利用性能的研究表明:水能够作为催化剂有效加速预聚反应、大幅缩短预聚时间,且酰胺N-H键未参与交联反应;DABA-PHT树脂易于合成和加工,且具有良好的力学、耐热、降解和循环回收利用性能,热导率达到0.38 W·m
-1
·K
-1
,接近普通环氧树脂的2倍,有望用来制备可循环回收利用的高热导率热固性树脂基复合材料.
The instant heat dissipation performance of electronic devices plays a decisive role in their service life
but contradicts with the continuous demand in their reducing size. The key to solving this technical bottleneck is to develop and use insulative polymer materials with high thermal conductivity
expecially those simutaneously with recyclability
which can further reduce the cost
protect the environment and prolong their sustainablility. Based on these
we used polyformaldehyde (PFA) and 4
4
'
-diaminobenzylaniline (DABA) with special aromatic-amide structure as raw materials
introduced local microscopic ordered structures into the resin curing network
via
the strong hydrogen bond interaction between amide bonds to increase the propagation free path of phonon
and synthesized a novel polyhexahydrotriazine thermosetting resin (DABA-PHT). Its prepolymerization process and mechanism
curing technology and performances in thermal conductivity
degradability and recycliability were investigated. The results show that water can be used as a catalyst to effectively accelerate the prepolymerization reaction and shorten the prepolymerization time greatly; the amidic N―H bonds did not participate in the crosslinking reaction; DABA-PHT resin can be easily synthesized and processed
and demonstrates satisfying mechanical property
heat resistance
degradability and recyclability. Its thermal conductivity is 0.38 W·m
-1
·K
-1
nearly twice as much as those of ordinary epoxy resins. Therefore
DABA-PHT can be expected to be used to prepare recyclable thermosetting resin matrix composites with high thermal conductivity.
聚六氢三嗪可循环回收利用本征导热氢键相互作用
Poly(hexahydrotriazine)RecyclableIntrinsic thermal conductivityHydrogen bond interactions
Moore G E. Electronics, 1965, 38: 38. doi:10.2307/2688161http://dx.doi.org/10.2307/2688161
Yu Jinhong(虞锦洪). Study on preparation and properties of polymer-based composites with high thermal conductivities(高导热聚合物基复合材料的制备与性能研究). Doctoral Dissertation of Shanghai Jiao Tong University (上海交通大学博士学位论文), 2012
Moore A L, Shi L. Mater Today 2014, 17: 163-74. doi:10.1016/j.mattod.2014.04.003http://dx.doi.org/10.1016/j.mattod.2014.04.003
Shin H, Ahn S, Kim D, Lim J K, Kim C B, Goh M. Compos Part B-Eng, 2019, 163: 723-729. doi:10.1016/j.compositesb.2019.01.049http://dx.doi.org/10.1016/j.compositesb.2019.01.049
Kang D G, Kim N, Park M, Nah C, Kim J S, Lee C R, Kim Y, Kim C B, Goh M, Jeong K U. ACS Appl Mater Interfaces, 2018, 10(4): 3155-3159. doi:10.1021/acsami.7b16921http://dx.doi.org/10.1021/acsami.7b16921
Hong H-J, Kwan S M, Lee D S, Kim S M, Kim Y H, Lim J S, Hwang J Y, Jeong H S. Compos Sci Technol, 2017, 152: 94-100. doi:10.1016/j.compscitech.2017.09.020http://dx.doi.org/10.1016/j.compscitech.2017.09.020
Yeo H, Islam A M, You N H, Ahn S, Goh M, Hahn J R, Jang S G. Compos Sci Technol, 2017, 141: 99-105. doi:10.1016/j.compscitech.2017.01.016http://dx.doi.org/10.1016/j.compscitech.2017.01.016
Islam A M, Lim H, You N H, Ahn S, Goh M, Hahn J R, Yeo H, Jang S G. ACS Macro Lett, 2018, 7(10): 1180-1185. doi:10.1021/acsmacrolett.8b00456http://dx.doi.org/10.1021/acsmacrolett.8b00456
Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W. Compos Sci Technol, 2020, 193: 108134. doi:10.1016/j.compscitech.2020.108134http://dx.doi.org/10.1016/j.compscitech.2020.108134
Gong Ying(龚莹), Zhou Wenying(周文英), Xu Li(徐丽), Peng Jiandong(彭建东), Zhao Wei(赵伟), Yan Zhiwei(闫智伟). China Plastics(中国塑料), 2018, 32(5): 7-13. doi:10.19491/j.issn.1001-9278.2018.05.001http://dx.doi.org/10.19491/j.issn.1001-9278.2018.05.001
Garcia J M, Jones G O, Virwani K, McCloskey B D, Boday D J, ter Huurne G M, Horn H W, Coady D J, Bintaleb A M, Alabdurahman A M S, Alsewailem F, Almegren H A A, Hedrick J L. Science, 2014, 344(6185): 732-735. doi:10.1126/science.1251484http://dx.doi.org/10.1126/science.1251484
Yuan Y, Sun Y, Yan S, Zhao J, Liu S, Zhang M, Zheng X, Jia L. Nat Commun, 2017, 8: 14657. doi:10.1038/ncomms14657http://dx.doi.org/10.1038/ncomms14657
Ma S, Webster D. Prog Polym Sci, 2018, 76: 65-110. doi:10.1016/j.progpolymsci.2017.07.008http://dx.doi.org/10.1016/j.progpolymsci.2017.07.008
Lee J, Hwang S, Lee S K, Ahn S, Jang S G, You N H, Kim C B, Goh M. Polymer, 2019, 179: 121639. doi:10.1016/j.polymer.2019.121639http://dx.doi.org/10.1016/j.polymer.2019.121639
Fox C H, ter Hurrne G M, Wojtecki R J, Jones G O, Horn H W, Meijer E W, Frank C W, Hedrick J L, Garcia J M. Nat Commun, 2015, 6: 7417. doi:10.1038/ncomms8417http://dx.doi.org/10.1038/ncomms8417
Jones G O, Garcia J M, Horn H W, Hedrick J L. Org Lett, 2014, 16(20): 5502-5505. doi:10.1021/ol502840khttp://dx.doi.org/10.1021/ol502840k
Sun C, Zhu J, Wang H, Jin J, Xing J, Yang D. Eur J Med Chem, 2011, 46(1): 11-20. doi:10.1016/j.ejmech.2010.09.047http://dx.doi.org/10.1016/j.ejmech.2010.09.047
Peng Yan(彭燕), Hou Yujia(侯雨佳), Shen Qiaoqiao(申巧巧), Wang Hui(王辉), Li Gang(李刚), Huang Guangsu(黄光速), Wu Jinrong(吴锦荣). Acta Polymerica Sinica(高分子学报), 2020, 51(2): 158-165. doi:10.11777/j.issn1000-3304.2019.19140http://dx.doi.org/10.11777/j.issn1000-3304.2019.19140
Yan Shijing(严石静). Recyclable Thermosetting Resin Based on the Nitrogen-Containing Groups and Carbon Fiber Reinforced Composite(可回收氮基热固性树脂及其碳纤维增强复合材料). Postdoctoral Research Report of South China University of Technology(华南理工大学博士后出站报告), 2016
Zhou Wenying(周文英), Dang Zhimin(党智敏), Ding Xiaowei(丁小卫). Heat Conductive Polymer Composites(聚合物基导热复合材料). Beijing(北京): National Defense Industry Press(国防工业出版社). 2017. 72-90. doi:10.1016/j.compositesa.2017.02.002http://dx.doi.org/10.1016/j.compositesa.2017.02.002
Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Du L, Chen B. Prog Polym Sci, 2016, 59: 41-85. doi:10.1016/j.progpolymsci.2016.03.001http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001
Luo Longbo(罗龙波), Ye Xinhe(叶信合), Yi Jiang(易江), Li Ke(李科), Liu Xiangyang(刘向阳). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 363-370. doi:10.11777/j.issn1000-3304.2020.20222http://dx.doi.org/10.11777/j.issn1000-3304.2020.20222
Boul P J, Rasner D K, Jarowski P D, Thaemlitz C J. MRS Commun, 2019, 9(2): 644-649. doi:10.1557/mrc.2019.33http://dx.doi.org/10.1557/mrc.2019.33
0
浏览量
68
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构